Патенты автора Няза Кирилл Вячеславович (RU)

Изобретение относится к области металлургии, а именно к порошковым материалам на основе алюминиевых сплавов, применяемых для изготовления деталей методами аддитивных технологий, в том числе методом селективного лазерного сплавления. Порошковый алюминиевый материал для изготовления деталей с использованием аддитивных технологий содержит, мас. %: кремний 2,00 – 5,00, железо 0,10 – 0,50, магний 0,10 – 0,80, цирконий 0,10 – 0,40, медь не более 0,02, марганец не более 0,02, титан не более 0,02, алюминий и неизбежные примеси – остальное, при соотношении содержания кремния, железа и магния, соответствующего условию Si ≥ Mg*6,5+Fe*5. Техническим результатом изобретения является повышение характеристик прочности и теплопроводности алюминиевого сплава, предназначенного для изготовления деталей с использованием аддитивных технологий. 2 н.п. ф-лы, 3 ил., 4 табл., 2 пр.

Изобретение относится к медицине. Гибридная металлополимерная конструкция для замещения костных дефектов трубчатых костей содержит сплошной внешний слой из сверхвысокомолекулярного полиэтилена и пористый слой из сверхвысокомолекулярного полиэтилена с размером пор 50-1000 мкм. Конструкция дополнительно содержит металлический каркас, перфорированный отверстиями, со значением жесткости на сжатие и изгиб, характерной для естественной кортикальной костной ткани. Сплошной внешний слой имеет гладкую биоинертную поверхность для контакта с мышцами и кожей. Пористый слой из сверхвысокомолекулярного полиэтилена имитирует губчатую костную ткань и имеет объемную пористость 50-90%. Изобретение обеспечивает высокие биосовместимость и репаративные свойства пористого слоя сверхвысокомолекулярного полиэтилена, а также адекватные механические свойства. 1 з.п. ф-лы, 2 пр., 5 ил.

Изобретение относится к области аддитивных технологий для получения трехмерных изделий сложной формы и предназначено для быстрого прототипирования или получения малых серий изделий в общем и транспортном машиностроении, авиационной технике или индивидуализированных медицинских изделий. Изобретение осуществляется путем спекания под давлением порошкового высоковязкого полимерного сырья в обратной форме с последующим удалением обратной формы. Полимерное сырье используют в виде порошка, смеси высоковязких полимеров, гранул высоковязких полимеров. Расход дорогостоящих полимеров на получение 1 кг готового изделия сложной формы данным способом в зависимости от формы не превышают 1,5 кг, тогда как путем механической обработки расход дорогостоящих полимеров на 1 кг готового изделия не менее 5,0 кг. Технический результат изобретения заключается в получении трехмерных изделий сложной формы из высоковязких полимеров (с ПТР при 190°С и нагрузке 21,19 Н менее 1 г/10 мин) с достаточной точностью изделия. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области медицины, в частности к созданию биосовместимых каркасов для замещения дефектов костной ткани. Биосовместимый каркас в форме биорезорбируемой пористой конструкции медицинского назначения с повышенной остеокондуктивностью на основе термопластичного полимера с добавлением биоактивного керамического компонента может быть заселен мультипотентными мезенхимальными стромальными клетками млекопитающих и состоит из полимерной матрицы полилактида и биоактивного наполнителя гидроксиапатита со средним размером частиц от 100 до 1000 нм с увеличенной адгезией к полимерной матрице. Указаный каркас формируется с помощью 3D-печати методом наплавления нитей с толщиной слоя 50-250 мкм и характеризуется наличием открытой пористости от 30 до 60 об.% и порами в виде каналов со средним диаметром 400-800 мкм. Биоактивный полимерный каркас характеризуется тем, что его эксплуатация возможна до температуры 55°C без изменения функциональных характеристик, каркаса, может быть заселен мультипотентными мезенхимальными стромальными клетками млекопитающих для использования в качестве имплантата для замещения дефектов костной ткани. 2 з.п. ф-лы, 9 ил., 2 пр.

Изобретение относится к композиционному материалу, выполненному в форме нити, на основе термопластичного полимера с добавлением биоактивного керамического компонента и может быть использовано для осуществления 3D-печати биорезорбируемых конструкций медицинского назначения методом наплавления нитей (Fused Filament Fabrication, FFF). Предложенный композиционный материал в виде биоактивной полимерной нити содержит полилактид и гидроксиапатит при следующем соотношении компонентов, масс.%: полилактид - 55-80, гидроксиапатит - 20-45. При этом размер частиц гидроксиапатита находится в диапазоне от 200 до 1000 нм, а диаметр биоактивной полимерной нити составляет 1,7 мм. Изобретение обеспечивает возможность формирования биорезорбируемых конструкций медицинского назначения с повышенной остеокондуктивностью методом послойной 3D-печати при повышении точности послойного наплавления нити при формировании изделий из нее. Эксплуатация изделий, выполненных из указанной нити, возможна до температуры 60°C без изменения функциональных характеристик. 7 ил., 1 табл., 2 пр.

Изобретение относится к композиционным материалам медицинского назначения и может быть использовано при изготовлении костных имплантатов. Полимерный композит с памятью формы состоит из «жесткой» и «мягкой» фаз. При этом «жесткая» фаза представлена кристаллической фазой полимерной матрицы, химическими и физическими сшивками и биоактивным компонентом в виде гидроксиапатита с размером частиц от 100 до 1000 нм, а «мягкая» фаза представлена аморфной фазой полимерной матрицы и пластификатором в виде полиэтиленгликоля при следующем соотношении компонентов, мас.%: полилактид от 80 до 47, гидроксиапатит от 15 до 35, полиэтиленгликоль от 4,6 до 15, химический агент для сшивки от 0,4 до 3,0. Изобретение обеспечивает возможность использования метода послойной 3D-печати для изготовления изделий медицинского назначения. Полимерный композит по изобретению отличается сшитой структурой для сохранения механических свойств, температурой активации эффекта памяти формы от 35 до 45°С, наличием возвращающих напряжений 3 МПа при восстановлении формы на уровне 98% при активации эффекта памяти формы, высокими механическими свойствами на растяжение (модуль Юнга 4 ГПа, предел прочности 43 МПа), высокими механическими свойствами на сжатие (модуль Юнга 11 ГПа, предел прочности 96 МПа). 1 з.п. ф-лы, 4 ил., 1 табл., 2 пр.

Изобретение относится к полимерматричным композиционным материалам и представляет собой порошковый композиционный материал на основе полисульфона, наполненного дисперсными частицами квазикристаллов систем Al-Cu-Fe или Al-Cu-Cr со степенью наполнения до 20 масс. %. Разработанные композиционные материалы могут быть использованы в трубной промышленности при производстве антикоррозийных защитных покрытий для стальных труб заводского нанесения для использования в нефтепроводах, магистральных газопроводах, продуктопроводах, трубопроводах коммунального назначения и др. и в химическом и специальном машиностроении, автомобильной промышленности в качестве защитных антикоррозийных покрытий конструкций. Разработанные материалы обладают высокой химической стойкостью, низким коэффициентом трения и хорошей адгезией к металлической подложке.

Изобретение относится к способу нанесения покрытия на полимерные пористые конструкции и может быть использовано для формирования композиционных полимерных пористых конструкций на основе полилактида медицинского назначения с размером пор от 300 мкм, отличающихся повышенной биоактивностью и гидрофильностью. Описан способ нанесения биоактивного композиционного покрытия на основе хитозана на полимерные пористые конструкции на основе полилактида, заключающийся в модифицировании поверхности порошка гидроксиапатита 3-аминопропилтриэтоксисиланом в спирте, сушке при температуре 70-90°С в течение 3-5 часов, смешении в дистиллированной воде порошка хитозана и гидроксиапатита при температуре 70-90°С в течение 0,5-1 часа, добавлении уксусной кислоты до получения 1М раствора, перемешивании до гомогенности в течение 1-2 часов, внесении полимерной пористой конструкции в раствор, перемешивании в течение 1-2 часов, добавлении 1М раствора NaOH до получения рН 5,5, перемешивании в течение 2-5 часов, добавлении по каплям NaOH до рН>6, отмывке пористой конструкции с осажденным композиционным покрытием в дистиллированной воде до достижения нейтрального рН. Технический результат: создание биоактивной полимерной биорезорбируемой конструкции с повышенной адгезией клеток к поверхности и цитокондуктивностью. 2 ил.

 


Наверх