Патенты автора Горева Ольга Валерьевна (RU)

Изобретение относится к области медицины, а именно к лучевой диагностике, рентгенологии, и может быть использовано для исследования для выявления нестабильности позвоночно-двигательных сегментов в шейном отделе позвоночника. Выполняют функциональную рентгенографию в боковой проекции в положении пациента «стоя» при сгибании и разгибании шейного отдела позвоночника. Функциональную рентгенографию проводят с отягощением с использованием груза весом 500 граммов, укрепленного на голове пациента. После этого выполняют рентгеновские снимки в боковой проекции при сгибании шейного отдела позвоночника – угол наклона 45 градусов и разгибании – 15 градусов, определяемые при помощи угломера. Определяют показатель нестабильности Р позвоночно-двигательных сегментов по математическому выражению P=L1+L2, где Р – показатель нестабильности, L1 – наибольшая протяженность смещения позвонка при выполнении функциональных проб, L2 – наименьшая протяженность смещения позвонка при выполнении функциональных проб. Когда в положении сгибания и разгибания шейного отдела позвоночника смещение позвонка происходит только в одном направлении, то Р представляет разность протяженности смещений. Затем дополнительно на рентгенограммах выявляют изменение высоты в передних и задних отделах межпозвонковых дисков шейного отдела позвоночника, патологическую подвижность позвоночно-двигательных сегментов в виде смещений смежных позвонков, деформации передней стенки позвоночного канала на уровне смещения. Технический результат обеспечивает более раннее и объективное определение «скрытой» нестабильности позвоночно-двигательных сегментов в шейном отделе позвоночника, своевременное проведение адекватного лечения дегенеративно-дистрофического процесса и купирование болевого синдрома. 5 ил.

Изобретение относится к методам определения концентрации примесей. Люминесцентный способ определения концентрации центров свечения в кристаллических материалах включает возбуждение люминесцентных примесей электронным пучком, длительность которого составляет 0,1 излучательного времени жизни наиболее короткоживущего центра свечения, регистрацию люминесценции, выявление характеристических полос в спектре люминесценции, идентификацию центров свечения, измерение интенсивностей эталона и характеристических полос, определение концентрации с привлечением данных по градуировочным образцам, где внутренним эталоном чувствительности является собственное фундаментальное широкополосное свечение исследуемого материала, длительность которого меньше излучательного времени центров свечения. Для возбуждения люминесценции примесей и эталонного широкополосного свечения образца используют лазерные фемтосекундные импульсы с интенсивностью, обеспечивающей возбуждение кристаллического вещества. Перпендикулярная лазерному лучу возбуждения входная щелевая диафрагма системы регистрации люминесценции, координатно перемещаемого образца, имеет размер, равный пространственной протяженности фемтосекундного лазерного импульса. Технический результат заключается в увеличении объема и пространственной точности неразрушающего контроля распределения концентрации примеси в кристаллических материалах при снижении сложности конструкции перемещения образца и затрат рабочего времени на подготовку аппаратуры. 7 ил., 1 табл.
Изобретение относится к нелинейной оптике. Способ измерения длительности фемтосекундных лазерных импульсов включает создание с помощью интерферометра двух копий исследуемого фемтосекундного лазерного импульса, которые направляются на нелинейный кристалл, обеспечивающий одновременную генерацию излучения второй гармоники одного из импульсов и излучения суммарной частоты от обеих копий, и регистрацию распределения интенсивности, возникающей при интерференции пучка второй гармоники исследуемого импульса и пучка суммарной частоты. Измеряют отношение интенсивности суммарной частоты и второй гармоники двух копий тестируемого фемтосекундного лазерного импульса к интенсивности суммарной частоты и второй гармоники двух копий длительностью 100 фс. По градуировочной линейной зависимости указанного отношения находят длительность исследуемых фемтосекундных лазерных импульсов. Технический результат – повышение точности измерения длительности фемтосекундных лазерных импульсов в диапазоне меньше 100 фс. 2 з.п. ф-лы, 2 ил.

Предложен способ, в котором исследуемую оптическую систему освещают широким плоскопараллельным пучком лазерного излучения с известной длиной волны λ, сфокусированное излучение пропускают через плоскопараллельную пластинку одноосного нелинейного кристалла, установленную в плоскости изображения, преобразуя его в излучение с длиной волны λ/2, после чего это излучение передают на оптико-электронный датчик, который устанавливают в двух или более заданных значениях расстояния от выходной грани плоскопараллельной пластинки, измеряют радиусы полученных кружков рассеяния при различных значениях расстояний и определяют сферическую аберрацию оптической системы. Технический результат - повышение точности, снижение сложности определения сферической аберрации объективов и линз, в том числе в инфракрасной области спектра, при этом сохраняя скорость определения сферической аберрации. 1 ил., 1 табл.

 


Наверх