Патенты автора Ворошилов Ярослав Сергеевич (RU)

Изобретение относится к производственным процессам. Многофункциональное программно-информационное устройство включает каналы приема и передачи информации, датчики состояния окружающей среды, лазерный измеритель расстояний и запыленности воздуха, световую сигнализацию, дисплей, тепловизионный модуль, громкоговоритель, счетно-решающее устройство, соединенное со всеми элементами устройства и с возможностью передачи информации на дисплей и аккумуляторную батарею. В устройство включены базы данных приемов безопасной работы, технологической документации, видеоинструкций. Дополнительно имеется привод, изменяющий угол наклона лазерного измерителя расстояния и запыленности воздуха и цифровой фотокамеры и видеокамеры. Повышается безопасность на производстве при непрерывном контроле обстановки. 1 ил.

Изобретение предназначено для автоматизации управления производственными процессами при проведении работ с опасными условиями труда, требующими непрерывного контроля за действиями и функциональным состоянием персонала, и может быть использовано как в обычном режиме работы предприятия, так и при возникновении аварийной ситуации. Техническим результатом предлагаемого изобретения является повышение безопасности производственного процесса за счет осуществления непрерывного контроля за производственным процессом и обеспечения непрерывного режима передачи актуальной аудиовизуальной информации и интерактивного видеоинструктажа. Способ управления производственными процессами включает измерение параметров окружающего воздуха, прием, хранение в базе данных и передачу информации по каналам связи и проведение инструктажа, а при формировании информации, необходимой для проведения инструктажа, учитываются генетические данные персонала, ассоциированные с ключевой психофизиологической составляющей человеческого фактора - утомлением. Для осуществления способа предлагается многофункциональное программно-информационное устройство. 2 н.п. ф-лы, 1 ил.

Изобретение относится к технике безопасности на предприятиях, а именно к автоматическим средствам измерения концентрации газов. Техническим результатом является повышение эффективности контроля параметров атмосферы за счет увеличения количества измеряемых значений и снижения их погрешности. Устройство контроля параметров атмосферы, содержащее корпус, дисплей, модуль сбора и обработки информации, содержащий базу предельных значений концентрации опасных газов, модуль измерения газового состава с датчиками опасных газов, звуковую и световую сигнализацию. Корпус выполнен во взрывозащитном исполнении, и устройство дополнительно содержит модуль передачи информации, модуль измерения температуры, давления, влажности, а модуль измерения газового состава снабжен пробоотборным насосом, измерительной камерой и датчиком расхода газовой смеси, передающим сигналы на модуль сбора и обработки информации и контролирующим работу пробоотборного насоса, датчики опасных газов встроены в измерительную камеру. Второй вариант устройства содержит выносной измерительный блок с модулем измерения газового состава и модулем измерения температуры, давления, влажности и работает без пробоотборного насоса. 2 н. и 3 з.п. ф-лы, 4 ил.

Изобретение относится к горной промышленности, а именно к технике безопасности и охране труда при разработке полезных ископаемых, и может быть использовано для определения интенсивности пылеотложения. Способ определения интенсивности пылеотложения включает определение запыленности, дисперсный состав пыли, влажности, температуры, скорости движения воздуха. При этом уровень запыленности и дисперсный состав пыли определяют с использованием оптического метода малых углов рассеяния, с учетом влажности окружающего воздуха и скорости воздуха с оценкой распространения пыли по длине выработки. Для осуществления способа предлагается датчик контроля интенсивности пылеотложения, включающий блок питания, блок обработки и передачи информации, линию передачи данных на дисплей, который дополнительно содержит модуль оптического излучения и приемники оптического излучения, расположенные под разными углами к источнику излучения и передающие информацию на модуль измерения дисперсного состава пыли, модуль измерения скорости воздушного потока, модуль измерения влажности, модуль измерения температуры, модуль измерения атмосферного давления, передающие информацию на блок обработки и передачи информации, где происходит логическая увязка всех сигналов с сигналами, полученными от модуля измерения дисперсного состава пыли, расчет дисперсности пыли и оценка интенсивности пылеотложения. Техническим результатом является повышение точности контроля состояния пылевзрывобезопасности атмосферы за счет использования оптического метода малых углов рассеяния для определения дисперсности пыли и увеличения количества показателей, характеризующих состояние атмосферы. 2 н. и 1 з.п. ф-лы, 1 ил.

 


Наверх