Патенты автора Буракова Марина Андреевна (RU)

Изобретение относится к способам динамического мониторинга узлов трения мобильных технических систем. Сущность: анализируют нормальную и тангенциальную составляющие сил фрикционного взаимодействия, их взаимный трибоспектр и автотрибоспектр нормальной составляющей, а также их отношения в форме комплексного коэффициента передачи или амплитудофазочастотной характеристики. Диагностика текущего состояния фрикционного контакта и прогнозирование его изменения выполняется на основании базы интегральных оценок как на всем частотном диапазоне регистрации амплитудофазочастотных характеристик трибосистемы, так и на заданных октавных диапазонах частот. Изменение указанных оценок на заданную величину пик-фактора определяет чувствительность систем автоматического управления (САУ) трибосистемой или систем автоматического регулирования (САР) параметрами трибосистемы и служит идентификационным признаком перехода из одного стационарного состояния в другое. Диагностика текущего состояния фрикционного контакта, идентификация процессов трения и изнашивания, краткосрочное или долгосрочное прогнозирование его изменения выполняются на основании сравнительного анализа собственных трибоспектральных характеристик фрикционного взаимодействия поверхностей трения, полученных на базе методов физико-математического моделирования процессов трения и трибоспектральных характеристик фрикционного взаимодействия поверхностей трения натурных узлов. На первом этапе динамического мониторинга натурных мобильных технических систем (МТС) формируется база трибоспектральных характеристик для идентификации процессов трения и изнашивания протекающих во фрикционных контактах МТС и фиксации в трехкоорндинатном пространстве периодических сигналов фрикционного взаимодействия контактирующих микро- и макрошероховатостей поверхностей трения, разложение периодических сигналов (собственных трибоспектров) в ряды Фурье на фиксированной сетке частот. На втором этапе фиксируются в трехкоординатном пространстве периодические сигналы фрикционного взаимодействия контактирующих микро- и макрошероховатостей поверхностей трения МТС. На третьем этапе проводится оценка корреляции сигналов в виде рядов Фурье, полученных в лабораторных условиях и эксплуатации МТС. Обеспечивается адекватность физико-математической модели МТС и натурной МТС путем выполнения физико-математического моделирования в m-масштабах линейных размеров с последующим определением относительных, абсолютных погрешностей, коэффициентов конкордации и корреляции фиксируемых выходных параметров в m физико-математических моделях МТС. Технический результат: повышение адекватности модели и снижение числа модельных экспериментов. 1 ил.

Настоящее изобретение относится к способам динамического мониторинга мобильных нелинейных технических систем (МНТС). Способ заключается в контроле процессов трения и изнашивания путем анализа нормальной и тангенциальной составляющих сил фрикционного взаимодействия, их взаимного спектра и автотрибоспектра нормальной составляющей, а также их отношения в форме комплексного коэффициента передачи или амплитудофазочастотной характеристики. Отличительной особенностью способа является то, что основе критериев качества традиционной теории автоматического регулирования для каждого момента времени вычисляются предельно допустимые уровни физических величин параметров, а на их основе реализуются: а) наблюдение за изменением тренда критерия диссипативных потерь энергии IQ во времени в октавных (долеоктавных) диапазонах частот, что позволяет установить их корреляционную связь с заданным уровнем вероятности и характером изменения трибологических параметров (например, изменения градиента коэффициента трения) и на этой основе идентифицировать наиболее коррелируемые диапазоны частот, на которых проявляются трибологические свойства фрикционного контакта, а также изменение трибологических параметров и внешних факторов (например, изменений вязкости смазочного материала, понижения температуры окружающего воздуха, появления износа или атермических / термических мостиков схватывания); б) наблюдение за изменением тренда безразмерной интегральной величины коэффициента демпфирования Iξ в октавных (долеоктавных) диапазонах частот и выделение наиболее коррелируемых k-информативных диапазонов частот трибоспектральных характеристик с k-трибологическими параметрами и внешними факторами фрикционного взаимодействия (например, изменением вязкости смазочного материала, понижением температуры окружающего воздуха, появлением износа, фреттинг-коррозии или атермических / термических мостиков схватывания), что позволяет с заданной вероятностью (0,95) идентифицировать моменты времени ухудшения упруго-диссипативных характеристик фрикционно-механической системы и на этой основе прогнозировать последующее поведение системы и остаточный ресурс работы модельного или натурного узла трения n-массной ФММ; в) наблюдение за изменением тренда критерия энергетических потерь IE позволяет идентифицировать стабильность фрикционных связей в реальном времени функционирования узла трения; г) мониторинг фрикционно-механической системы во времени по обобщенному, критерию динамики Iд фрикционно-механической системы, и его пороговым значением «предупреждения» - величины «1» и «опасности» - «1,15». Технический результат - повышение точности результатов модельных и натурных испытаний и определения выходных параметров натурной МНТС и ее физической модели. 3 табл., 13 ил.

Изобретение относится к испытательной технике. Сущность: процессы, протекающие на фрикционном контакте (ФК) «объекта» и «модели», описываются аналогичными математическими моделями, уравнениями регрессии, получаемыми при натурном эксперименте, с применением математического планирования полного или дробного факторного эксперимента. Измерение трибопараметров ВМНТС осуществляется во время проведения испытаний. Коэффициент трения представляется в виде комплексной функции, т.е. в виде отношения взаимного трибоспектра в тангенциальном и нормальном направлениях к автотрибоспектру в нормальном направлении, действительная часть которого характеризует упругие, а мнимая - диссипативные свойства подсистемы фрикционного контакта. Выполняется контроль и фиксирование удельной площади касания в реальном масштабе времени методом проводимости в паре металл-металл или методом лазерного просвечивания в паре металл-полимер. Обеспечивается равенство констант подобия в квазилинейной (механической) и существенно нелинейной (фрикционной) подсистемах высокомобильных нелинейных механических систем (ВМНТС), в том числе константы подобия давления амплитуды колебания деформаций консервативных связей СΔА=1 и жесткости консервативных связей . Массы, совершающие плоскоколебательные движения в поле сил тяготения в натурной ВМНТС, приводятся к вращающемуся центру приведения физико-математической модели ВМНТС. Упрощение эквивалентной динамической модели ВМНТС выполняется при соблюдении равенства суммарных кинематических и потенциальных энергий натурной ВМНТС и ее физико-математической модели, с использованием метода Рэлея, учитывающего величины жесткости связей, соединяющих сосредоточенные и распределенные массы. Технический результат: обеспечение достаточного и необходимого соответствия основных динамических характеристик квазилинейных (механических) подсистем натурной ВМНТС и ее физической модели. 11 ил., 1 табл.

Изобретение относится к области машиностроения, а более конкретно к способам управления фрикционными системами. Предложен способ управления фрикционными системами путем подачи в зону трения третьего тела. В качестве третьего тела используют материал, обладающий анизотропными свойствами. При этом обеспечивается высокий не менее 0,3 при продольном крипе и низкий не более 0,14 при поперечном крипе коэффициент сцепления. Третье тело может быть в виде металла (Al, Zn, Cu) или его окислов (Аl2О3, ZnO, CuO). В зоне трения происходят процессы создания динамического воздействия на фрикционную систему в виде внешних, собственных колебаний или фрикционных автоколебаний контактирующих микро- и макрошероховатостей. Кроме того, могут происходить процессы подавления собственных колебаний контактирующих микро- и макрошероховатостей, а также изменяется суммарная контактная жесткость при изменении направления относительного скольжения поверхностей трения. Достигается подавление шума. 11 ил.

Новая конструкция держателя колодки для роликовых машин трения относится к области трибологии и предназначено для установки колодок на машинах трения «Амслер» и других аналогичных типов при проведении износных испытаний. Отличие его заключается в том, что в нижней части пластины 1 выполнен паз Б, плоскость симметрии которого проходит через ось основного отверстия, а в центре перемычки паза Б установлен сферический конус 2 для базирования исследуемой колодки, причем в боковых стенках паза В и Г выполнены отверстия с расположенными в них пружинами 3 и винтами 4, предотвращающими выпадение колодки из держателя в процессе сборки. Для проведения измерений электросопротивления трибоконтакта основное отверстие А пластины снабжено электроизолирующим кольцом 5. Техническим результатом является расширение области применения, повышение точности определения коэффициента трения и снижение трудоемкости проведения испытаний. 1 з.п. ф-лы, 1 ил.

 


Наверх