Патенты автора Стоцкая Анастасия Дмитриевна (RU)

Устройство измерения коэффициента сцепления колес воздушных судов с покрытием взлетно-посадочных полос (ВПП) содержит несущую раму, опирающуюся на два несущих колеса, измерительное колесо, компьютерный пульт управления и индикации, независимый груз с рычагом, цепную передачу, тормозной генератор, датчик тока торможения, датчики угловых скоростей измерительного колеса и одного из несущих колес, систему автоматического управления скольжением измерительного колеса, независимую подвеску, пружинный амортизатор с демпфером, управляемый трехфазный выпрямитель переменного тока, нагрузочное сопротивление, тензометрическую систему, блок корреляции результатов измерения коэффициента сцепления покрытия с реальной характеристикой торможения колес приземляющегося воздушного судна. Блок корреляции результатов измерения содержит компьютерное рабочее место командно-диспетчерского пункта аэродрома, блок экспертной оценки, программатор антиблокировочных режимов торможения и блок вычисления коэффициента корреляции коэффициента сцепления, соединенные определенным образом. Обеспечивается повышение точности и достоверности измерений коэффициента сцепления ВПП. 1 з.п. ф-лы, 2 ил.

Предложена адаптивная система управления электромеханическим устройством торможения колеса, содержащая транспортное колесо с присоединенным датчиком угловой скорости, кинематически соединенное с электрическим тормозным генератором, подключенным через управляемый выпрямитель с датчиком тока торможения к нагрузочному сопротивлению, а также блок вычисления скольжения транспортного колеса и последовательно соединенные программатор, первый сумматор, регулятор скольжения, второй сумматор и регулятор тока торможения, выход которого соединен с управляющим входом управляемого выпрямителя, первый и второй входы блока вычисления скольжения транспортного колеса соединены соответственно с выходом датчика угловой скорости транспортного колеса и со вторым выходом программатора, выход блока вычисления скольжения подключен ко второму входу первого сумматора, а выход датчика тока торможения соединен со вторым входом второго сумматора, а также настраиваемую модель электромеханического устройства торможения транспортного колеса, третий сумматор, блок нелинейной коррекции настраиваемой модели и фильтр, а также модальный регулятор, причем первый и второй входы настраиваемой модели соединены соответственно с выходами первого сумматора и блока нелинейной коррекции, а выход настраиваемой модели соединен со входом модального регулятора, третий и четвертый входы первого сумматора соединены соответственно с выходами модального регулятора и фильтра, первый вход третьего сумматора соединен с выходом датчика угловой скорости транспортного колеса, а вход фильтра подключен к выходу блока нелинейной коррекции, дополнительно введены идентификатор состояния и четвертый сумматор, первый и второй входы которого соединены соответственно с выходом настраиваемой модели и с первым выходом идентификатора состояния, второй его выход соединен со вторым входом третьего сумматора, первый и второй входы идентификатора состояния соединены соответственно с выходами первого и третьего сумматоров, а выход четвертого сумматора соединен с третьим входом настраиваемой модели и входом блока нелинейной коррекции. Достигается повышение точности и быстродействия устройства при отработке им сложных программных, в том числе антиблокировочных, режимов торможения колеса в условиях неопределенности параметров, проявления упругих деформаций пневматической шины в «пятне контакта» с покрытием, а также «срывного» характера сил сухого трения при ее проскальзывании. 2 ил.

Изобретение относится к измерительным средствам, предназначенным для непрерывного измерения коэффициента сцепления колес с поверхностью искусственных взлетно-посадочных полос. Устройство измерения коэффициента сцепления колес с аэродромными покрытиями содержит несущую раму, опирающуюся на два несущих колеса, рычажную подвеску с измерительным колесом, рычаг с независимым грузом, пружинным амортизатором и демпфером, соединенный с подвеской посредством первой подшипниковой опоры, тормозной генератор, цепную передачу, датчик тока торможения, датчики угловых скоростей измерительного колеса и одного из несущих колес, управляемый трехфазный выпрямитель, нагрузочное сопротивление, тензометрическую систему, состоящую из тензодатчика и блока преобразования сигналов тензодатчика, компьютерный пульт управления и индикации и систему автоматического управления скольжением (торможением) измерительного колеса. В устройство также введены тяга с шаровыми опорами на концах и вспомогательная балка, скрепленная с несущей рамой посредством второй подшипниковой опоры. Основание рычажной подвески измерительного колеса присоединено к вспомогательной балке посредством третьей подшипниковой опоры. Тормозной генератор установлен на вспомогательной балке, а его вал связан цепной передачей со ступицей измерительного колеса. Тензодатчик встроен в консоль, жестко закрепленную одним концом на несущей раме, а свободный конец консоли с тензодатчиком соединен со вспомогательной балкой посредством тяги с шаровыми опорами на концах так, что продольная ось тяги горизонтальна и лежит в вертикальной плоскости продольной симметрии несущей рамы. В результате повышается точность и стабильность измерения коэффициента сцепления. 3 ил.

 


Наверх