Патенты автора Шмыгалев Александр Сергеевич (RU)

Изобретение относится к электролитическому получению кремния из расплавленных солей, в частности к получению нано- и микроразмерных осадков кремния, которые могут быть использованы в литий-ионных химических источниках тока и фотоэлектрических элементах с улучшенными энергетическими характеристиками. Способ включает электролиз галогенидного расплава, содержащего K2SiF6, в атмосфере аргона при температуре от 650 до 750°С, отличающийся тем, что используют расплав состава NaI - 56 мас.%; KI - 44 мас.% с добавкой 7 мас.% K2SiF6, при этом электролиз ведут при катодной плотности тока от 0,001 до 0,005 А/см2. Способ позволяет получать сплошные нано- и микроразмерные осадки кремния волокнистой структуры при возможности использовать более широкий спектр конструкционных материалов за счет снижения агрессивности электролита. 2 ил., 3 пр.
Изобретение относится к высокотемпературной гальванопластике, а именно, к электролитическому получению коррозионно- и термостойких металлов, в частности ниобия, легированного танталом, который можно использовать в качестве покрытий, применяемых для защиты деталей различного оборудования в условиях высокотемпературных и агрессивных сред, а также изделий из этого металла, таких, например, как детали летательных аппаратов, оболочки тепловыделяющих элементов, контейнеры для жидких металлов, детали электролитических конденсаторов и других. Предложенный способ включает проведение электролиза в бромидном расплаве, содержащем KBr и CsBr с постоянной концентрацией, равной 27 мас.% и 73 мас.% соответственно, и использованием анода из ниобия и тантала и катода из проводящего материала. При этом электролиз осуществляют при анодной плотности тока 0,02 А/см2, катодной плотности тока от 0,05-0,1 А/см2 в атмосфере аргона при температуре 750-800°С, с содержанием в упомянутом расплаве ниобия 4–6 мас.%, тантала 1-2 мас.% в пересчете на металл, с получением на катоде покрытия или изделия. Обеспечивается расширение сферу применения электролиза бромидного расплава, получение покрытий и изделий с высокой термической и коррозионной стойкостью. 5 пр.

Изобретение относится к электролитическому получению гексахлоррената цезия, который может быть использован для приготовления электролитов, пригодных для электроосаждения рения. Синтез гексахлоррената цезия осуществляется путем электрохимической реакции ионизации металлического рения в растворе соляной кислоты концентрацией 350 г/л с добавлением хлорида цезия с концентрацией на пределе растворимости 1500 г/л под действием переменного тока 2 А и частотой 1–50 Гц с последующей химической реакцией. Способ обеспечивает упрощение синтеза гексахлоррената цезия и снижение затрат на его реализацию. 1 ил., 5 пр.

Изобретение относится к синтезу электролитов для получения покрытий и изделий из рения методом высокотемпературной гальванопластики в расплавах солей. Электрохимическая ячейка для проведения синтеза расплава CsCl-KCl-NaCl-Cs2ReCl6 состоит из анодного и катодного узлов, которые разделены между собой неэлектропроводящей диафрагмой и помещены в герметизируемую кварцевую реторту, при этом электрохимическая ячейка выполнена в виде стакана с крышкой, в которой установлен первый токоподвод, а через отверстие в центре крышки подведен второй токоподвод, причем в стакан помещена кварцевая труба, полость внутри которой разделена диафрагмой, под диафрагмой размещается католит, а над ней - анолит и металлический рений, закрепляемый на токопроводящем стержне, который установлен в размещенной в отверстии крышки стакана кварцевой трубке и соединен со вторым токоподводом. Техническим результатом является упрощение аппаратурного оформления процесса. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области гальванотехники и может быть использовано для получения тонких рениевых пленок, которые после нанесения на различные подложки могут быть использованы в качестве подслоя для высокотемпературной гальванопластики, для производства полупроводниковых элементов, использующихся в аэрокосмической технике, радиотехнике, электронике и других областях. Электролит состоит из водного раствора, содержащего, г/л: HCl 200-350 и соединение рения в пересчете на металл 0,5-10,0. Технический результат: отсутствует необходимость введения дополнительных добавок, реализован низкий диапазон температур эксплуатации электролита, снижены ресурсоемкость и экологическая нагрузка. 1 табл., 6 пр.

Изобретение относится к высокотемпературной гальванотехнике, а именно: к электролитическому осаждению ниобия, и может быть использовано для нанесения покрытий на подложки из проводящего материала. Способ включает электролиз расплава при анодной плотности тока 0,02 А/см2, катодной плотности тока от 0,05–0,1 А/см2 в атмосфере аргона, при этом электролиз проводят в интервале температур от 700 до 750°С в расплавленном электролите, содержащем бромид калия, бромид цезия и бромид ниобия, содержащий ниобий от 2 до 5 мас.% в пересчете на металл. Технический результат: получение высококачественных, сплошных ниобиевых покрытий с высоким выходом по току. 4 пр., 2 ил.
Изобретение относится к области получения ИК волоконных сборок из галогенидсеребряных световодов, предназначенных для передачи теплового изображения в среднем инфракрасном диапазоне (2-20 мкм) и востребованных для применения в промышленной и медицинской термографии с целью визуализации распределения теплового поля от удаленного объекта. Способ получения инфракрасных волоконных сборок на основе галогенидсеребряных световодов включает получение световодов методом экструзии из монокристаллов твердых растворов хлорид-бромида серебра и их упаковку в гексагональную структуру. При этом предварительно из монокристалла вырезают заготовку диаметром 14-16 мм, высотой 15-20 мм, после чего методом экструзии получают поликристаллическую заготовку с величиной зерна 500-600 нм, диаметром 3 мм, длиной 430±5 мм. Затем вторично экструдируют для получения однослойных световодов диаметром 100 мкм размером зерен 50-60 нм, из которых механической сборкой формируют гексагональную структуру из 19, 37 и 61 световода с последующим их уплотнением, при этом диаметры сборок составляют 500, 700, 900 мкм и длиной 2,7±0,3 м. При этом световоды содержат 25,0–75,0 мас.% хлорида серебра и 75,0–25,0 мас.% бромида серебра. Обеспечивается повышение температурного разрешения, уменьшение оптических потерь и снижение перекрестных помех. 3 пр.
Изобретение относится к медицине, в частности к стоматологии, и может быть использовано при лечении пародонтита. Осуществляют снятие зубных отложений и кюретаж пародонтальных карманов. Воздействуют ультрафиолетовым излучением локально на пародонтальный карман каждого пораженного зуба с длиной волны 253-270 нм с мощностью 400-410 мВт в непрерывном режиме. Время экспозиции – 10-20 сек. Воздействие осуществляют один раз в день в течение 7 дней. Способ обеспечивает повышение эффективности лечения за счет купирования воспалительного процесса, денатурации молекул патогенных организмов, заживления пародонтальных карманов, снижения кровоточивости. 1 пр.

 


Наверх