Патенты автора Теплякова Ирина Алексеевна (RU)

Изобретение относится к области металлургии и может быть использовано для оптимизации технологического процесса сверхпластической деформации ответственных силовых деталей: лопасти компрессоров ГТД, валы, роторы и т.д. Из титанового сплава ВТ8 изготавливают деталь методом сверхпластической деформации при температуре от 850 до 950°C и скоростях деформации 10-4 с-1. На готовую деталь после сверхпластической деформации методом ионно-плазменного напыления наносят покрытие TiC+TiN. Затем осуществляют термическую обработку при температуре от 850 до 900°C с выдержкой при температуре от 400 до 550°C. Изобретение позволяет повысить износостойкость и снизить коэффициент трения в зонах контакта трущихся поверхностей деталей вала компрессора ГТД.

Изобретение относится к области авиа- и ракетостроительного машиностроения и может быть использовано в создании опорных узлов трения, где в качестве опор скольжения используются сферические шарнирные подшипники. Шаровая опора содержит корпус, выполненный из двух частей в виде крышек, неразъемно соединенных между собой, с заключенным в корпус шаровым пальцем со сферической головкой. Пространство между шаровым пальцем и корпусом заполнено вкладышем и наполнителем с металлическими гранулами. Материал шарового пальца выполнен из литейного никелевого сплава ЭИ-578, а на его сферической поверхности электроискровым методом нанесено композиционное соединение (HfO2+HfB2). Технический результат: повышение износостойкости шаровой опоры со сферическим подшипником скольжения при рабочих температурах 1400 К за счет приобретенного свойства несхватывания при трении, а также образования на рабочих поверхностях прочных слоев новых антифрикционных материалов, увеличение ресурса работы всей опоры трения в целом. 2 ил.

Изобретение относится к области авиа- и ракетостроительного машиностроения и может быть использовано в создании узлов трения, где в качестве опор скольжения используются сферические шарнирные подшипники. Шаровая опора содержит корпус, выполненный из двух крышек, независимо соединенных между собой, металлический шаровой палец, заключенный в корпус, вкладыш полимерный, наполнитель с металлическими гранулами. Материал шарового пальца выполнен из легированного сплава ЭП517Ш, а на его сферической поверхности методом вакуумно-дугового ионно-плазменного осаждения нанесено покрытие Ni-Cr-Mo-Ti редкоземельного металла Gd. Таким образом, используя данную лигатуру осаждения совместно с РЗМ Gd, на сферической поверхности шарового пальца формируется дополнительное антифрикционное покрытие, содержащее пластичную металлическую матрицу на основе Ni с РЗМ Gd и твердые частицы карбидов металлов Cr, Mo, W, Ti. Керамический оксид, стабилизированный гадолинием, благодаря высокой твердости керамики, позволяет защитить сферическую поверхность шарового пальца, тем самым повысить износостойкость и выровнять средние значения контактных давлений рабочих поверхностей сферических шарнирных подшипников. 1 ил.
Изобретение может быть использовано для изготовления методом сверхпластической деформации ответственных силовых деталей из титанового сплава ВТ6, в частности шпангоутов, люков, обтекателей. Предварительно проводят электролитическую модификацию сплава никелем. Нагревают сплав до температуры 926°C, а газовую формовку осуществляют при температуре 815°C и скорости деформации 2⋅10-3 с-1 до достижения равного соотношения α- и β-фаз микроструктуры сплава. Способ обеспечивает улучшение механических свойств готовых изделий за счет улучшения морфологии и реологических характеристик исходного материала.
Изобретение относится к области металлургии и может быть использовано для оптимизации технологического процесса сверхпластической формовки ответственных силовых деталей. Изобретение позволяет улучшить прочностные характеристики деталей из титанового сплава ВТ8. Изготавливают силовые элементы из титанового сплава ВТ8. Далее последовательно проводят в три этапа термическую обработку. Первую проводят при температуре от 600° до 650°C, при которой происходит выделение силицидов титана из пересыщенных твердых растворов α- и β-фаз. Вторую проводят при температуре от 850°C, которая характеризуется превращением фазового состава из α- в β-. Третью проводят при температуре от 950° до 1100°C. При температуре 1100°C фазовый состав сплава представлен только β-фазой.

 


Наверх