Патенты автора ЦЗЯН Фань (CN)

В настоящем изобретении раскрыт способ определения динамической надежности в отношении неисправностей соединения срединного желоба скребкового конвейера. Представлен способ оценки динамической надежности в отношении неисправностей соединения срединного желоба скребкового конвейера, обеспечивающий более точное описание динамической корреляции между режимами отказа срединного желоба скребкового конвейера при условии малой выборки, а также повышение точности оценки динамической надежности в отношении неисправностей соединения срединного желоба скребкового конвейера. 5 з.п. ф-лы, 5 ил.

Изобретение относится к системе обследования шахтного ствола с синхронизацией движения и способу управления системой. Система обследования шахтного ствола содержит трос, перемещающееся по тросу роботизированное устройство, поверхностное устройство для перемещения троса, поверхностную дорожку для перемещения троса, подземное устройство для перемещения троса, подземную дорожку для перемещения троса, инерциальный датчик и устройство управления. Верхний конец троса соединен с поверхностным устройством для перемещения троса, а нижний конец проходит через перемещающееся по тросу роботизированное устройство и соединяется с подземным устройством для перемещения троса. Устройство управления управляет подземным и поверхностным устройствами для перемещения троса для их синхронного движения, а инерциальный датчик, установленный на перемещающемся по тросу роботизированном устройстве, обнаруживает данные о положении троса и передает данные на устройство управления. Изобретение позволяет получать данные о положении троса в режиме реального времени за счет использования лишь инерциального датчика, установленного на перемещающемся по тросу роботизированном устройстве, определяя, смещен ли трос, а также управляя дорожками системы обследования шахтного ствола. 2 н. и 4 з.п. ф-лы, 6 ил.

Приводная система содержит носовое зубчатое колесо, хвостовое зубчатое колесо, приводной механизм носового зубчатого колеса и приводной механизм хвостового зубчатого колеса. Приводной механизм носового зубчатого колеса представляет собой гидравлический двигатель I. Приводной механизм хвостового зубчатого колеса представляет собой гидравлический двигатель II. Гидравлическая система, которая приводит в действие гидравлический двигатель I, и гидравлическая система, которая приводит в действие гидравлический двигатель II, содержат одинаковые гидравлические элементы, и обе из них содержат трехпозиционный четырехходовой соленоидный направляющий клапан, двухпозиционный двухходовой соленоидный направляющий клапан, двухпозиционный трехходовой соленоидный направляющий клапан, аккумулятор и клапанную группу для подачи масла. Обеспечиваются простота конструкции и длительный срок службы. 2 н. и 4 з.п. ф-лы, 4 ил.

Группа изобретений относится к области транспортного машиностроения. Перемещающееся по тросу роботизированное устройство содержит корпус роботизированного устройства, перемещающийся вдоль направляющего элемента и имеющий кожух, приводной модуль и направляющий модуль. Кожух разделен в продольном направлении на четное количество сегментов кожуха. В кожухе также установлены механизмы открытия кожуха, содержащие платформу, торсионную пружину из сплава с памятью формы, ножницеобразные штанги и регулировочный механизм. Способ преодоления препятствия перемещающимся по тросу роботизированным устройством включает этапы: обнаруживают наличие впереди неисправного роботизированного устройства; бесщеточный двигатель постоянного тока вращается для приведения магнитного колеса во вращение; бесщеточный двигатель постоянного тока и шаговый двигатель совместно вращаются для преодоления неисправного роботизированного устройства; после преодоления неисправного роботизированного устройства шаговый двигатель прекращает вращаться. Достигается автономность работы роботизированных устройств. 2 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к антиблокировочной системе крупнотоннажного скипа. Антиблокировочная система крупнотоннажного скипа содержит сам скип, два параллельных ряда направляющих, шкивы, ударные плиты. Направляющие прикреплены к верхней и нижней частям стенок вала с двух сторон скипа, соответственно. Большая часть шкивов установлена на направляющих в согласованном порядке. Ударные плиты установлены между верхним и нижним шкивами. Причем передние и задние плиты установлены между верхним и нижним комплектами шкивов в переднем и заднем рядах соответственно. Длина ребристых ударных плит больше ширины скип. Основания гидроцилиндров и вибродвигатели установлены на наружных сторонах ребристых плит с определенным интервалом. Часть головок гидравлических цилиндров соединены с их основаниями с помощью буферных пружин, а остальные головки соединены со стенкой вала. Штоки гидроцилиндров осуществляют толкающее воздействие на внутренние стороны ребристых ударных плит с целью обеспечения плотного крепления к наружной стенке скипа во время выдвижения. Достигается повышение безопасности и эффективности работы шахтной подъемной установки. 4 з.п. ф-лы, 4 ил.

Изобретение раскрывает систему онлайн-мониторинга образования трещин на шпинделе подъемного механизма и способ мониторинга образования трещин. Система состоит из силового блока натяжения каната, блока обнаружения трещин, блока беспроводной передачи данных и компьютера. Силовой блок натяжения каната состоит из двух тяговых канатов, двух направляющих колес, двух шаговых электродвигателей и двух приводов шаговых электродвигателей. Блок обнаружения трещин состоит из направляющего рельса спиральной трубчатой пружины, скользящей детали и ультразвукового преобразователя. Блок беспроводной передачи данных содержит три ZigBee-модуля беспроводных датчиков. ZigBee-модули получают команды с компьютера и передают команды приводам шаговых электродвигателей для осуществления контроля за вращением этих электродвигателей. Шаговые электродвигатели приводят направляющие колеса во вращение для осуществления намотки канатов, таким образом чтобы скользящая деталь начинала скольжение по направляющему рельсу спиральной трубчатой пружины. Техническим результатом является обеспечение эффективного контроля шпинделя подъемного механизма до возникновения неполадки, что позволяет избежать производственных аварий. 2 н. и 3 з.п. ф-лы, 5 ил.

Настоящее изобретение раскрывает устройство для определения износа скользящей муфты направляющего подъемника стального троса шахтного ствола и способ его определения. Устройство включает в себя множество элементов плоского FPC-кабеля, множество участков цепи обнаружения напряжения, систему контроля, а также оборудование для воспроизведения данных на экране, в котором две торцевые стороны скользящей муфты имеют соответственно множество элементов плоского FPC-кабеля, множество элементов плоского FPC-кабеля, которые были последовательно соединены с концевой частью скользящей муфты вокруг отверстия для стального каната для того, чтобы обеспечить защиту; каждый элемент плоского FPC-кабеля подключается к участку цепи обнаружения напряжения; конец входного сигнала системы управления имеет соответственно сигнальное соединение со множеством участков цепи обнаружения напряжения, а конец выходного сигнала модуля управления подключается к модулю беспроводной передачи данных через выходную цепь; оборудование для воспроизведения данных на экране принимает данные, переданные модулем беспроводной передачи данных через модуль их приема. Техническим результатом при реализации заявленного решения выступает повышение надежности и эффективности определения степени износа скользящей муфты направляющего подъемника стального троса шахтного ствола. 2 н. и 6 з.п. ф-лы, 8 ил.

Данное изобретение представляет собой систему диагностики неисправностей цепных скребковых конвейеров, содержащую розетку тензодатчиков, прикрепленных к верхней торцевой поверхности зубцов звездочки скребкового конвейера. Розетка тензодатчиков соединена с блоком сбора сигналов, закрепленным на валу скребкового конвейера, с помощью экранированного проводника; блок сбора сигналов отправляет собранные сигналы на беспроводное приемное устройство по беспроводному каналу, а беспроводное приемное устройство передает собранные полученные сигналы на промышленный управляющий компьютер через интерфейс USB. Способ диагностики состоит из трех этапов: определение неисправностей сдвига/пропуска цепи, определение обрыва цепи и определение неисправности заедания цепи. Изобретение обеспечивает техническую поддержку всестороннего мониторинга состояния цепи скребкового конвейера путем измерения величины натяжения зубцов звездочки в разных направлениях в режиме реального времени, передачи собранных сигналов на промышленный управляющий компьютер по беспроводной сети и динамическую диагностику неисправностей заедания, смещения, проскальзывания и обрыва цепи скребкового конвейера на основе полученных данных о натяжении. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к области технического исследования надежности механической конструкции и может быть использовано в горном деле для оценки работоспособности шахтного подъемного оборудования. Техническим результатом является повышение эффективности работы подъемной системы в километровых шахтах. Предложен метод оценки надежности подъемной системы шахтного ствола с подъемником в километровых шахтах с учетом нескольких режимов отказа, включающий следующие этапы: этап 1 определения средних значений и отклонений габаритных размеров, характеристик материалов и внешней нагрузки на шахтный ствол с подъемником и установления типов распределения этих параметров; этап 2 составления трехмерной параметрической модели шахты исходя из ее конструкционных параметров и импорт трехмерной параметрической модели шахтного ствола в ПО для расчета по конечноэлементному методу для выполнения статистического анализа; этап 3 составления матрицы случайной выборки для основных параметров исходя из их средних значений и отклонений, вычисленных на этапе 1, с использованием метода выборки; этап 4 составления нескольких новых трехмерных моделей шахтного ствола по значениям из каждой строки матрицы случайной выборки и получения новой выборки для профиля напряжение/деформация с использованием конечноэлементного анализа; этап 5 совмещения матрицы случайной выборки и значений профиля напряжение/деформация с применением нейросети и получения функции, описывающей отношение между профилем напряжение/деформация для шахтного ствола и изменением конструктивных характеристик; этап 6 расчета по отдельности функции надежности для режима отказа по прочности и для режима отказа по жесткости для шахтного ствола с подъемником; расчета моментов третьего и четвертого порядков для основных параметров по средним значениям и отклонениям; расчета моментов третьего и четвертого порядков для установленных функций и определения по отдельности вероятности отказа по прочности и вероятности отказа по жесткости методом перевала; этап 7 получения коэффициента корреляции между отказом по прочности и отказом по жесткости с использованием статистического метода, определения совместного распределения отказов как по прочности, так и по жесткости с использованием копулы Клейтона и расчета вероятности отказа подъемной системы в случае коррелирования отказов с использованием совместного метода определения надежности. 4 з.п. ф-лы, 4 ил.

Заявленное изобретение относится к устройству для контроля крутящего момента главного вала подъемной машины, основанному на измерении угла кручения. Заявленное устройство для контроля крутящего момента главного вала подъемной машины содержит первое основание, второе основание, генераторный блок источника света, перегородку, и светочувствительный элемент, в котором источник света, первая линза и первая диафрагма расположены в генераторном блоке источника света, вторая диафрагма и вторая линза на перегородке, и светочувствительный элемент образуют тракт генерации, передачи и приема света. При этом в момент, когда главный вал подъемной машины подвергается воздействию определенного крутящего момента, между первой диафрагмой и второй диафрагмой происходит соответствующее смещение, и, таким образом угол кручения вала может быть определен путем измерения изменения количества света, достигающего второй оптической диафрагмы, и в конечном счете может быть вычислен крутящий момент на валу. Технический результат - измерение крутящего момента вала с использованием принципа обнаружения света. 2 з.п. ф-лы,

 


Наверх