Патенты автора Брунков Павел Николаевич (RU)

Изобретение относится к электроэнергетике и может быть использовано для контроля уровня накопления усталостных повреждений проводов воздушной линии электропередачи (ЛЭП). Сущность: на линии электропередачи выбирают первый участок провода в месте подвеса провода на опору и второй участок провода той же длины, расположенный на удалении от места подвеса. Измеряют напряжения и токи первого и второго участков. Определяют поверхностное активное сопротивление первого и второго участка провода. Уровень накопления усталостных повреждений определяют по изменению поверхностного активного сопротивления первого участка провода на подвесном зажиме. Изменение поверхностного активного сопротивления первого участка провода определяют по разности активных сопротивлений со вторым участком. Измерение поверхностного активного сопротивления двух участков провода осуществляется по мостовой схеме при пропускании импульса тока высокой частоты. Измерения осуществляются периодически автономным устройством, устанавливаемым на опоре с наиболее нагруженным пролетом контролируемого участка линии. Результаты измерений передаются диспетчеру. Технический результат: повышение надежности контроля технического состояния провода. 2 ил.

Группа изобретений относится к области сенсорной техники, в частности к газовым сенсорам хеморезистивного типа и к способам их изготовления. Газовые сенсоры хеморезистивного типа, которые широко применяются для детектирования примесей в окружающей атмосфере. Газоаналитический мультисенсорный чип на основе графена включает диэлектрическую подложку, на которой сформированы компланарные полосковые электроды из благородного металла, терморезисторы и нагреватели, при этом по меньшей мере на часть поверхности электродов и на подложку между электродами нанесен слой газочувствительного материала в виде слоя функционализированного графена, у которого при комнатной температуре изменяется сопротивление под воздействием примесей органических паров или паров воды в окружающем воздухе, при этом слой газочувствительного материала выполнен в виде перфорированного слоя с отверстиями 5-100 нм карбоксилированного графена с содержанием карбоксильных групп от 8 до 12 ат.%, которые ковалентно связаны с графеновой решеткой. Также предложен способ изготовления газоаналитического мультисенсорного чипа. Газоаналитический мультисенсорный чип согласно изобретению имеет повышенную чувствительность и селективность распознавания газов без необходимости нагрева газочувствительного слоя. 2 н. и 12 з.п. ф-лы, 14 ил.

Группа изобретений относится к области сенсорной техники и нанотехнологий, в частности к изготовлению газовых сенсоров и газоаналитических мультисенсорных линеек хеморезистивного типа. Газовый детектор включает диэлектрическую подложку, расположенные на подложке компланарные полосковые электроды, терморезисторы и нагреватели, при этом по меньшей мере часть поверхности электродов и подложки между электродами покрыты слоем газочувствительного материала, у которого при комнатной температуре изменяется сопротивление под воздействием примесей органических паров или паров воды в окружающем воздухе. Согласно предлагаемому техническому решению в качестве материала газочувствительного слоя использован аминированный графен с содержанием первичных аминов не менее 4 ат.%, которые ковалентно связаны с графеновой решеткой, при этом слой аминированного графена выполнен переменной толщины от 5 до 150 нм. Также предложен способ изготовления описанного газового детектора. Группа изобретений обеспечивает повышение газочувствительности и эффективности распознавания газов. 2 н. и 10 з.п. ф-лы, 19 ил.

Изобретение относится к области сенсорной техники и нанотехнологий, в частности к разработке газовых сенсоров и мультисенсорных линеек хеморезистивного типа, используемых для детектирования газов. Газовый детектор включает диэлектрическую подложку, на которой имеются компланарные полосковые электроды из благородного металла, терморезисторы и нагреватели, при этом в качестве газочувствительного материала применяют слой графена, функционализированного карбонильными группами, который на первом этапе синтезируют методом жидкофазной модификации суспензии оксида графена путем добавления навески порошка силиката натрия в соотношении 1,3-3,3 г/л в водную или органическую суспензию оксида графена концентрацией 1-5 вес. %, тщательного перемешивания смеси до достижения водородного показателя в суспензии рН 9-9,5 и нагрева полученной суспензии в течение 48-52 часов при температуре 75-85°C, на втором этапе для очистки суспензии от побочных продуктов реакции ее центрифугируют со скоростью 12000-12500 об/мин в течение 15-20 мин, удаляют надосадочную жидкость, полученный осадок разбавляют раствором HCl, концентрацией 0,05-0,1% в соотношении 10-70 г/л, перемешивают в течение 2-5 мин, центрифугируют со скоростью 12000-12500 об/мин в течение 15-20 мин, удаляют надосадочную жидкость, полученный осадок разбавляют деионизованной водой до концентрации 0,1-0,4 вес. % и установления значения рН 5,5-6, в результате чего получают суспензию, содержащую графен, функционализированный карбонильными группами, на третьем этапе наносят суспензию, содержащую графен, функционализированный карбонильными группами, в виде тонкой пленки, толщиной до 120 нм, на поверхность подложки сенсора или чипа, после чего высушивают на воздухе при комнатной температуре в течение 10-12 часов и при нагреве до 70-80°C в течение 1-2 часов. Техническим результатом является создание газового сенсора хеморезистивного типа с высокой селективностью. 4 з.п. ф-лы, 11 ил.

Изобретение относится к физике полупроводниковых структур. Способ усиления мощности радиочастотно-модулированного терагерцового излучения 30-периодной слабосвязанной полупроводниковой сверхрешетки GaAs/AlGaAs заключается в том, что соединяют параллельно активные модули, каждый из которых представляет собой меза-структуру упомянутой слабосвязанной сверхрешетки с шириной барьеров >4 нм, и смещают упомянутые активные модули в режим генерации автоколебаний тока. Технический результат заключается в обеспечении возможности линейного роста мощности излучения сверхрешетки GaAs/AlGaAs при увеличении числа меза-структур. 3 ил.

 


Наверх