Патенты автора Авакян Александр Анушаванович (RU)

Изобретение относится к области систем обработки информации критических функций в бортовых средствах автоматизированного управления процессами авиационных, ракетно-технических, корабельных и других систем. Технический результат заключается в повышении надежности и отказоустойчивости коммутации. Архитектура предлагаемой системы состоит из N модулей с входными аппаратными приложениями, выходными аппаратными приложениями, интерфейсно-вычислительной платформы и встроенного в платформу коммутатора. Обмен информацией между модулями осуществляется без центрального коммутатора при помощи встроенных в модули коммутаторов через выходы модуля, которые соединены с соответствующими входами остальных модулей по принципу «точка-точка». При этом каждый модуль для обеспечения отказоустойчивости системы может включать в себя n коммутаторов, обеспечивающих управление избыточностью модуля посредством его реконфигурации. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области измерения углов атаки и скольжения в полете летательного аппарата (ЛА) и может использоваться в системах индикации опасных ситуаций на самолете для диагностики имеющихся на борту систем измерения углов атаки и скольжения, а также в системах автоматического управления самолетом и беспилотными летательными аппаратами, в частности при полете в неспокойной атмосфере. В основу предлагаемого способа положен алгоритм косвенного определения углов атаки и скольжения. Для определения угла атаки измеряется статическое и динамическое давления воздушного потока, используя типовые приемники воздушного давления, измеряются три компонента линейных ускорений с помощью трехстепенного акселерометра, установленного в центре тяжести ЛА. По параметрам этих систем определяется текущий коэффициент подъемной силы и далее угол атаки. При этом используется зависимость коэффициента подъемной силы от угла атаки при различных положениях закрылков и шасси, полученная аналитическим путем или продувкой в аэродинамической трубе. Для определения угла скольжения используются уравнения поперечной силы. Технический результат заключается в повышении надежности контура безопасности за счет дополнительного метода измерения аэродинамических углов, особенно при полете в неспокойной атмосфере, возможности перейти к необслуживаемой технической эксплуатации в межрегламентный период, уменьшении числа первичных датчиков измерения давления. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области авиационной техники и может быть использовано в составе бортового оборудования летательных аппаратов, на которых в составе пилотажно-навигационного комплекса установлены многофункциональные индикаторы (МФК) отображения навигационной, пилотажной информации и выдачи информации о параметрах и состояния силовой установки и общесамолетных систем. Технический результат – расширение функциональных возможностей на основе повышения информативности системы в поле зрения командира экипажа при неблагоприятных погодных условиях видимости аэродромной обстановки и безопасности выполнения полетного задания. Для этого в устройство, содержащее блоки вычисления и формирования индикации, пульты системы индикации, блоки электронных индикаторов, дополнительно введен индикатор, выполненный в виде цифрового прозрачного монитора со встроенным компьютером и элементами крепления, при помощи которых индикатор крепится на козырек приборной доски пилотов, при этом индикатор электрически соединен с блоками вычисления и формирования индикации. При неблагоприятных погодных условиях по согласованию с командой пункта управления воздушным движением аэропорта, командир кнопками монитора индикатора включает устройство в работу, при этом на монитор индикатора выводится рассчитанное по реальным параметрам положения летательного аппарата (ЛА) синтезированное пространственное изображение ландшафта аэродрома и осуществляется его дальнейшее динамическое сопровождение в реальном масштабе времени. 4 ил.

 


Наверх