Патенты автора Тумаркин Андрей Вилевич (RU)

Изобретение относится к технологии получения оксидных стеклообразных композитов - мультиферроиков, сочетающих в себе ферромагнитные и электрические свойства. Cтеклокристаллический композит получают путём создания пористой стекломатрицы из железосодержащего силикатного стекла, в поровое пространство которой внедряют сегнетоэлектрическую фазу Ba0,75Sr0,25TiO3. Получают водный раствор титанил-нитрата, добавляют водные растворы нитрата бария или ацетата бария и нитрата стронция, смешивают с глицином в стехиометрическом соотношении для получения сложного оксида Ba0,75Sr0,25TiO3. В полученный раствор помещают пластину пористого ферромагнитного стекла. Пропитанный образец извлекают, высушивают, подвергают термообработке при температуре 550-700°С с выдержкой 0,5-3 часа. Анализ магнитных свойств полученных стеклокерамических композитов показал значительное увеличение намагниченности сформированного композитного материала по сравнению с исходной стекломатрицей. 4 ил.

Изобретение относится к технологии получения оксидных стеклообразных композитов - мультиферроиков, сочетающих в себе ферромагнитные и электрические свойства, которые могут быть использованы в области свервысокочастотной электроники. Исходное железосодержащее силикатное стекло в системе K2O-Fe2O3-SiO2 синтезируют методом варки из шихты в электрической силитовой печи на воздухе при температурах 1500°С в платиновом тигле. Затем проводят отжиг стекла и ионообменную обработку пластин железосодержащего силикатного стекла в расплаве нитрата натрия в интервале температур 350-450°С при изотермической выдержке в течение 6-24 часов, в ходе которой происходит формирование пористой магнитной стекломатрицы, после чего в полученную стекломатрицу, внедряют сегнетоэлектрическую фазу путем пропитки солевым раствором или расплавом, для чего готовят насыщенный раствор сегнетовой соли - KNaC4H4O6⋅4H2O, из расчета 55 гр на 100 мл дистиллированной воды при температуре 20°С, затем в химический стакан с готовым раствором помещают пластину пористого ферромагнитного стекла и осуществляют пропитку стекломатрицы с периодическим перемешиванием раствора сегнетовой соли и переворачиванием обрабатываемого образца в течение 12 часов. Образец извлекают из раствора и высушивают при температуре 50°С в сушильном шкафу в течение 1 часа. Технический результат изобретения - получение стеклокристаллического композита, сочетающего в себе ферромагнитные и сегнетоэлектрические свойства. 3 ил.

Изобретение относится к способу получения сегнетоэлектрической пленки Ba1-xSrxTiO3 и может быть использовано для мощной сверхвысокочастотной техники. На первом этапе распыляют мишень состава Ba0,4Sr0,6TiO3 на подложку карбида кремния в атмосфере кислорода при давлении 2 Па и температуре подложки 700-900°С в течение времени, достаточного для создания сплошного сегнетоэлектрического слоя. На втором этапе процесс распыления прекращают и повышают температуру подложки на время, достаточное для отжига сплошного сегнетоэлектрического слоя. По окончании процесса отжига температуру подложки понижают до температуры первого этапа. Прочие технологические параметры не изменяют. Затем этапы повторяются несколько раз до получения необходимой толщины сегнетоэлектрической пленки. Технический результат состоит в получении сегнетоэлектрической пленки с высокой диэлектрической нелинейностью при низких диэлектрических потерях на подложке с высокой теплопроводностью для мощной сверхвысокочастотной техники. 2 ил., 1 пр.

Изобретение относится к технологии получения тонких пленок для сверхвысокочастотных применений и может быть использовано для выбора оптимальных компонентных составов пленок и срезов монокристаллической подложки для достижения эпитаксиального роста. На первом этапе определяется материал подложки, на которой хотят получить тонкую пленку. Затем, исходя из рассогласования межплоскостных доменов материалов подложки и выращиваемой пленки, выбирают подходящие материалы мишени, которую будут распылять. Затем из выбранных материалов мишени подбирают материал из условий обеспечения рассогласования межплоскостных доменов подложки и пленки в направлении, отличающемся от первого. Таким образом согласуются двумерные домены пленки и подложки, при этом происходит компенсация остаточных рассогласований. Далее выбранный материал мишени распыляют на сапфировую подложку в атмосфере кислорода при давлении 2 Па и температуре подложки 850°С. Техническим результатом является улучшение структурного качества и кристалличности тонких пленок для сверхвысокочастотных применений на несогласованных подложках. 2 ил.

Способ получения сегнетоэлектрической пленки Ba1-xSrxTiO3 относится к технологиям получения тонких пленок и может быть использован при получении сегнетоэлектрических пленок Ba1-xSrxTiO3 для сверхвысокочастотной техники. На первом этапе распыляют мишень состава Ba0,4Sr0,6TiO3 на сапфировую подложку с подслоем платины в атмосфере кислорода при давлении 2 Па и температуре подложки 700-900°С в течение времени, достаточного для создания сплошного сегнетоэлектрического слоя. На втором этапе процесс распыления прекращается на время, достаточное для отжига сплошного сегнетоэлектрического слоя, прочие технологические параметры не изменяются. Затем этапы повторяются несколько раз для получения необходимой толщины сегнетоэлектрической пленки. Техническим результатом является высокая диэлектрическая нелинейность сегнетоэлектрической пленки при низких диэлектрических потерях, что позволяет использовать полученные сегнетоэлектрические пленки в сверхвысокочастотной технике. 2 ил.

Способ получения сегнетоэлектрической пленки Ba1-xSrxTiO3 относится к технологиям получения тонких пленок и может быть использован при получении сегнетоэлектрических пленок Ba1-xSrxTiO3 для сверхвысокочастотной техники. На первом этапе на сапфировой подложке формируют сплошной сегнетоэлектрический слой путем распыления мишени состава Ba1-xSrxTiO3 в атмосфере кислорода с давлением 2 Па и температуре подложки 850-900°C. На втором этапе температуру подложки снижают до 750-800°C, при которой формируют основной сегнетоэлектрический слой. Техническим результатом является высокая диэлектрическая нелинейность ориентированной сегнетоэлектрической пленки при высокой добротности, позволяющая использовать полученные сегнетоэлектрические пленки в сверхвысокочастотной технике. 3 ил.

 


Наверх