Патенты автора Рудаков Павел Николаевич (RU)

Изобретение относится к устройствам для контроля герметичности полых изделий. Сущность: устройство содержит вакуумную камеру (1), герметично разделенную упругой эластичной перегородкой (2) на рабочий объем (3) и вспомогательный объем (4). Величина вспомогательного объема (4) больше или равна величине рабочего объема (3). Рабочий объем (3) и вспомогательный объем (4) соединены вакуумным трубопроводом (5), оснащенным вакуумным затвором (6) и напускным клапаном (17). Вспомогательный объем (4) соединен с постом (16) вакуумной откачки основной и байпасной линиями откачки. Основная линия откачки состоит из основного вакуумного трубопровода (12) с вакуумным затвором (13) и вакуумным клапаном (15). Байпасная линия откачки состоит из байпасного вакуумного трубопровода (22) с байпасным вакуумным клапаном (14). К основному вакуумному трубопроводу (12) подсоединен гелиевый масс-спектрометрический течеискатель (18). Опрессованное гелием испытуемое изделие (7) через загрузочное окно (8) устанавливают на подставку (9), снабженную встроенным электронагревателем, подключенным к блоку (10) регулирования и поддержания температуры. К полости испытуемого изделия (7) подключают датчик давления (11). Датчик (11) давления, вакуумные датчики (19, 20), а также вакуумные затворы и клапаны контролируются и управляются посредством общего блока (21) контроля и управления. Технический результат: упрощение конструкции устройства, увеличение производительности устройства, повышение достоверности контроля. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области машиностроения, а именно к высокоскоростным механическим двухроторным насосам. Насос содержит корпус 1, вал ротора 3, соединенный с электродвигателем, и магнитожидкостное уплотнение. Магнитожидкостное уплотнение установлено в корпусе 1 в зоне вала 3 и включает постоянный магнит 4, полюсные наконечники 5, 6, магнитопроводящую втулку 9 с цилиндрическим выступом 8. В наконечниках 5, 6, на нижней половине обращенных друг к другу внутренних поверхностях, образованы кольцевые канавки треугольного сечения. Между наконечниками 5, 6 и боковыми поверхностями нижней половины выступа 8 выполнены зазоры. Магнитная жидкость размещена вокруг зубцов наконечников 5, 6 с образованием герметичных перемычек. Втулка 9 герметично закреплена на валу 3. Со стороны атмосферного давления в верхней половине выступа 8 выполнена цилиндрическая выточка 12 высотой, доходящей до верхнего зубца внешнего наконечника 5. Изобретение направлено на упрощение конструкции, повышение надежности и ресурса работы насоса при высоких скоростях откачки вакуумных объемов. 3 з.п. ф-лы, 2 ил.

Изобретение относится к уплотнительной технике и может быть использовано для герметизации подвижных валов и штоков, работающих в вакууме. На протяжении всего времени эксплуатации осуществляется автоматическая автономная подача магнитной жидкости в уплотненный рабочий зазор между валом и полюсными наконечниками, происходящая за счет действия постоянного избыточного давления в системе заправки магнитной жидкости, создаваемого грузовым поршнем, расположенным в вертикальном цилиндрическом корпусе в положении выше уровня корпуса вакуумного уплотнения. В корпусе и полюсных наконечниках выполнены герметичные каналы, подходящие ко всем межзубцовым кольцевым канавкам в полюсных наконечниках и служащие для обеспечения автоматической заправки и дозаправки магнитной жидкостью всего рабочего зазора между валом и полюсными наконечниками на протяжении всего времени эксплуатации, при этом каналы соединены трубопроводами с заполненной магнитной жидкостью нижней частью вертикально расположенного цилиндрического корпуса, герметично отделенной от атмосферы грузовым поршнем, размещенным в этом же цилиндрическом корпусе, а в обеих торцевых крышках уплотнения установлены маслосъемные манжеты и опорные подшипники скольжения для вала. Технический результат: обеспечение автономной автоматической подачи магнитной жидкости под постоянным давлением в рабочий зазор уплотнения при эксплуатации в любой востребованный момент времени; повышение надежности и ресурса работы; упрощение конструкции. 1 ил.

Изобретение относится к области уплотнительной техники и может быть использовано в промышленных вакуумных установках для герметизации вращающихся валов. В корпусе, присоединенном герметично к вакуумной камере, размещено вакуумное магнитожидкостное уплотнение вала, вращающегося в подшипниках, состоящее из постоянного магнита и двух сборных полюсных наконечников, каждый из которых состоит из неподвижных внешнего и внутреннего колец, изготовленных из магнитопроводного материала и имеющих цилиндрические выступы в нижней части, внутренние стороны которых с нанесенными на них кольцевыми канавками направлены навстречу друг к другу. При этом на выступы колец опирается внутреннее подвижное кольцо, изготовленное из упругого несжимаемого магнитопроводного материала, в нижней части имеющее цилиндрический выступ, боковые поверхности которого образуют зазоры постоянной величины 0,1 мм с вершинами кольцевых канавок цилиндрических выступов колец и на которых собирается магнитная жидкость. В свою очередь внутренняя цилиндрическая поверхность выступа образует рабочий зазор переменной величины с вершинами кольцевых канавок, выполненных на валу и заполненных магнитной жидкостью. Постоянный магнит с примыкающими к нему частями полюсных наконечников и вращающимся уплотняемым валом, изготовленным из магнитопроводной стали, составляют замкнутую магнитную цепь. Внешняя поверхность внутреннего подвижного кольца имеет полукруглую форму, вершина которой образует с внутренней цилиндрической поверхностью корпуса переменный ограничительный зазор, равный 0,4 мм, при сборке уплотнения. При этом образованная переменная свободная полость в полюсных наконечниках через каналы в корпусе соединена с герметичным вакуумным трубопроводом. Изобретение направлено на повышение надежности, ресурса работы и расширение эксплуатационных возможностей вакуумного магнитожидкостного уплотнения при работе с разными частотами оборотов и окружных скоростях вращения вала за счет создания плавного автоматического регулирования величины рабочего зазора и момента трения в нем. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области машиностроения и может быть использовано для измерения процентного состава кислородно-водородных и других газовых смесей, применяемых для испытания работоспособности авиационной и космической техники. Пробоотборник постоянного давления поршневого типа состоит из вертикально расположенного цилиндрического корпуса с герметичным нижним фланцем. Он разделен на два объема, из которых нижний герметичный рабочий объем для размещения анализируемой газовой смеси соединен трубопроводами с запирающими вентилями и приборами для измерения давления с емкостью с анализируемой газовой смесью и газовым хроматографом. В цилиндрическом корпусе размещен поршень. Поршень отделяет нижний герметичный рабочий объем для анализируемой газовой смеси от верхнего объема, находящегося под атмосферным давлением. На поршне установлены верхнее и нижнее кольцевые уплотнения, образующие между собой герметичную полость. Она соединена с одной стороны через трубопровод и запирающий вентиль с атмосферой, а с другой стороны через трубопровод и запирающие вентили и трубопровод с емкостью, заполненной анализируемой газовой смесью под давлением, равным рабочему давлению газовой смеси, заполняющей нижний герметичный объем. Каналы в корпусе не выходят из зоны герметичной кольцевой полости поршня при нахождении его как в крайнем верхнем, так и в крайнем нижнем положении, а на выступающей из ограничительного фланца части поршня при нахождении его в крайнем верхнем положении устанавливается дополнительно груз. Технический результат заключается в повышении надежности работы пробоотборника, увеличении его безопасности в использовании и упрощении конструкции. 1 ил.

Изобретение может быть использовано для измерения процентного состава различных газовых сред, применяемых при испытаниях работоспособности авиационной и космической техники. Пробоотборник постоянного давления состоит из цилиндрического корпуса с герметизирующими его по торцам фланцами, корпус разделен на два объема для размещения пробы газовой среды и рабочего газа, корпус снабжен приборами для измерения давления и запирающими вентилями, в корпусе установлены две упругие газонепроницаемые перегородки одного размера, одна перегородка разделяет корпус на два равных герметичных объема - верхний и нижний, а вторая перегородка герметично закреплена под верхним фланцем корпуса, обе перегородки соединены между собой жестко штоком, а на верхней выступающей части штока, закрепленной контровочной гайкой, установлена градуированная шкала, верхний и нижний объемы цилиндрического корпуса соединены трубопроводами с запирающими вентилями с вакуумным насосом и емкостью с анализируемой газовой средой, при этом нижняя часть корпуса соединена трубопроводом через запирающий вентиль с газовым хроматографом. Техническим результатом является упрощение конструкции и обеспечение автономной автоматической поддержки постоянного давления при подаче пробы газовой среды на анализ в газовый хроматограф. 1 ил.

Изобретение относится к вакуумным высокотемпературным нагревательным камерам для обработки изделий. Камера содержит герметичный корпус, соединенный с вакуумным откачным постом, и размещенные в герметичном корпусе нагреватели и теплозащитные экраны. Герметичный корпус выполнен с откидной дверью, а нагреватели выполнены с возможностью обработки изделий при температуре 2000-3000°С. Теплозащитные экраны установлены между нагревателями и внутренними стенками корпуса и откидной дверью и выполнены полыми с возможностью охлаждения за счет заполнения их полостей водой с постоянной температурой 99°С из водонагревательного бака через гибкие теплоизолированные шланги с помощью высокотемпературного гидравлического насоса. На выходе из корпуса полости экранов соединены с водонагревательным баком с нижней стороны корпуса через охлаждаемый водой конденсатор водяного пара, а с верхней стороны корпуса через последовательно установленные пароэжекторный вакуумный насос и охлаждаемый водой конденсатор водяного пара. Незаполненная водой верхняя часть водонагревательного бака подсоединена трубопроводом к входу в пароэжекторный вакуумный насос. Обеспечивается повышение надежности и ресурса работы вакуумной высокотемпературной нагревательной камеры при увеличении диапазона рабочих температур. 1 з.п. ф-лы, 1 ил.

Изобретение относится к вакуумной установке пиролиза метана. Установка содержит вакуумную рабочую камеру, соединенную линией откачки с механическим вакуумным насосом. При этом в линию откачки между механическим вакуумным насосом и вакуумной рабочей камерой установлен уравнительный вакуумный бак, разделенный герметичной перегородкой на две равные части. Нижняя часть уравнительного вакуумного бака соединена с вакуумной рабочей камерой посредством вакуумного трубопровода, а с другой стороны соединена через вакуумный клапан с механическим вакуумным насосом. Верхняя часть уравнительного вакуумного бака соединена через вакуумный клапан с вакуумным насосом, а с другой стороны соединена с вакуумной рабочей камерой посредством вакуумного трубопровода, в котором герметично установлена упругая мембрана, соединенная штоком с подвижным поршнем, корпус которого снабжен сквозными осевыми каналами. На внешней цилиндрической поверхности установлены два вакуумных кольцевых уплотнения, пространство между которыми соединено с вакуумной рабочей камерой сквозными каналами. Технический результат заключается в повышении безопасности и точности поддержания заданного рабочего давления в процессе пиролиза метана в вакуумной рабочей камере и качества выпускаемой продукции. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области исследования устройств на герметичность и может быть использовано для исследования на герметичность полых устройств. Сущность: устройство содержит вакуумную камеру (1) для размещения опрессованного контрольным газом изделия (8). Вакуумная камера (1) соединена с последовательно расположенными дополнительными вакуумными камерами (2, 3), объем каждой из которых составляет не более 1/3 от объема предыдущей вакуумной камеры. Вакуумная камера (1) и дополнительные вакуумные камеры (2, 3) последовательно соединены друг с другом соединительными элементами (13, 14) через сквозные отверстия, выполненные в корпусах вакуумных камер. Площадь поперечного сечения каждого сквозного отверстия и соединительных элементов (13, 14) при равной их длине на 1/3 меньше площади поперечного сечения предыдущего сквозного соединительного отверстия вакуумной камеры. Перемещение изделия (8) между вакуумными камерами (1-3) осуществляют при помощи конвейерной ленты (7). Вакуумные камеры (1-3) оснащены нагревателями (16). Контроль герметичности изделия (8) осуществляют при помощи масс-спектрометрического течеискателя (9). Технический результат: снижение трудоемкости и повышение достоверности результатов контроля. 7 з.п. ф-лы, 1 ил.

Изобретение относится к области металлургии и может быть использовано при термической обработке режущих инструментов. Для повышения надежности и долговечности протяжек с плоскими гранями её подвергают трехступенчатому нагреву, при этом на первой ступени нагревают не менее 1 часа в камерной печи с температурой менее 600°С, но превышающей 560°С, на второй ступени - в соляном расплаве с температурой свыше 850°С, но не превышающей 900°С, в течение времени, определяемого из соотношения 15-25 секунд на миллиметр ширины корпуса протяжки, на третьей ступени - в соляном расплаве с температурой ниже 1270°С, но не менее 1160°С, в течение времени, определяемого из соотношения 10-15 секунд на миллиметр ширины корпуса протяжки, проводят охлаждение на воздухе до 980-1020°С, а затем в минеральном масле в течение 45-60 с до 590-610°С, определяют величину и направление продольного прогиба протяжки, укладывают горячую протяжку выпуклой гранью на поверочную плиту и совершают перемещения протяжки по поверочной плите до снижения ее прогиба до заданной величины, затем протяжку охлаждают в подвешенном положении до температуры мартенситного превращения металла протяжки. 3 з.п. ф-лы, 1 ил.

 


Наверх