Патенты автора Костина Мария Алексеевна (RU)

Способ неразрушающего контроля неисправностей в электрической сети включает соединение вводного щита с двумя электроустановками, измеряют ток каждой электроустановки, полученные данные о величине тока передают в микроконтроллер, анализируют изменение термоЭДС при включении и выключении каждой электроустановки, возникшее суммарное напряжение электрической сети уменьшают, фильтруют, выделяя термоЭДС, которую усиливают и сравнивают с заданным значением напряжения, принятым для соответствующей степени пожароопасности электрической сети, формируют сигнал предупреждения о возникновении пожароопасной ситуации в зависимости от величины заданного значения сигнала, принятого для соответствующей степени пожароопасности. Техническим результатом при реализации заявленного решения является расширение арсенала технических средств. 1 ил., 1 табл.

Устройство неразрушающего контроля неисправностей в электрической сети, содержит вводной щит, к которому через электрическую сеть, переходное сопротивление и датчики тока подключены две электроустановки. К электрической сети последовательно подключены высоковольтный делитель, фильтр низких частот, усилитель, аналого-цифровой преобразователь, микроконтроллер, первый и второй индикаторы. Первая и вторая электроустановки подключены к электрической сети через датчики тока, выходы датчиков тока подключены к микроконтроллеру через усилители-ограничители. 1 ил., 1 табл.

Использование: для исследования процесса горения порошков металлов или их смесей. Сущность изобретения заключается в том, что осуществляют одновременное инициирование процесса горения в предварительно спрессованном порошке с помощью сфокусированного излучения инициирующего лазера и фиксацию момента начала воздействия инициирующего излучения фотодиодом, регистрацию изменений отражательной способности поверхности объекта исследования во время и после воздействия излучением инициирующего лазера, определение длительности процесса горения, при этом инициируют процесс горения лазерным воздействием заданной длительности и мощности, после фиксации момента начала воздействия инициирующего излучения генерируют ультразвуковые волны, облучают ими объект исследования, принимают отраженные от него ультразвуковые волны, преобразуют их в электрические сигналы, которые усиливают, преобразуют в цифровой вид, сохраняют и анализируют, причем по амплитуде отраженных волн судят об отражательной способности поверхности объекта исследования, а по времени распространения ультразвуковых волн судят об изменении его размера. Технический результат: обеспечение возможности регистрировать отражательную способность поверхности объекта исследования и определять временные параметры его горения даже в случае сильного задымления. 2 ил.

Изобретение относится к области исследования материалов и может быть использовано для исследования процессов высокотемпературного горения порошков металлов. Устройство для исследования процесса горения порошков металлов или их смесей содержит инициирующий лазер, на оптической оси которого последовательно размещены механический затвор, светоделительная пластина, двояковыпуклая линза и объект исследования, расположенный на линейном трансляторе. Механический затвор соединен с контроллером. Фотодиод установлен напротив светотоделительной пластины под углом к оптической оси инициирующего лазера, равном углу отражения светоделительной пластины. Напротив объекта исследования, рядом друг с другом, установлены излучатель и приемник. Излучатель соединен с генератором ультразвуковых импульсов. Приемник соединен с усилителем, который связан с аналого-цифровым преобразователем. Фотодиод, генератор ультразвуковых импульсов и аналого-цифровой преобразователь связаны с контроллером, который подключен к персональному компьютеру. Технический результат – обеспечение исследования процесса горения даже в условиях сильного задымления. 2 ил.

Изобретение относится к ультразвуковым локационным измерителям уровня жидкости и сыпучих продуктов. Технический результат заключается в снижении погрешности измерений. Устройство компенсации погрешности измерения ультразвукового локатора содержит генератор ультразвуковых импульсов, соединенный с излучателем, приемник, соединенный с усилителем, к выходу которого подключены два пороговых устройства с различными пороговыми напряжениями, два источника опорного напряжения, подключенные к входам соответствующих пороговых устройств, выходы пороговых устройств подключены к соответствующим блокам формирования временного интервала, выходы которых подключены к блоку управления и индикации, выходы которого соединены с входом генератора и с входом первого блока формирования временного интервала. В качестве источников опорного напряжения использованы регулируемые источники опорного напряжения с   изменяемым напряжением, входы которых подключены к выходам соответствующих регуляторов, входы которых связаны с блоком управления и индикации. При этом выход первого блока формирования временного интервала соединен со вторым входом второго блока формирования временного интервала. 2 ил.

Использование: изобретение относится к ультразвуковым локационным измерителям уровня жидкости и сыпучих продуктов в резервуарах на автозаправочных станциях и нефтебазах, а также в химической, нефтяной, пищевой и других отраслях народного хозяйства. Сущность: способ компенсации погрешности измерения ультразвукового локатора включает измерение временных интервалов между излученным импульсом и срабатыванием первого порогового устройства с пороговым напряжением U1 и между срабатыванием первого и второго пороговых устройств с пороговым напряжением U2, превышающим пороговое напряжение U1 первого порогового устройства, преобразование этих временных интервалов в цифровой код, расчет временного интервала между срабатыванием первого порогового устройства и началом эхо-импульса из выражения: Δt = , где (t2–t1) – временной интервал между срабатыванием первого и второго пороговых устройств, определение временного интервала распространения ультразвукового импульса в контролируемой среде из выражения tp=t1-Δt, и определение расстояния до отражающей поверхности путем умножения временного интервала tp на скорость распространения ультразвука в контролируемой среде и индикацию этого расстояния. При определении временных интервалов между излученным импульсом и срабатыванием первого порогового устройства с пороговым напряжением U1 и между срабатыванием первого и второго пороговых устройств с пороговым напряжением U2 плавно уменьшают уровни пороговых напряжений U2 и U1 до тех пор, пока длительности этих временных интервалов скачкообразно не уменьшатся на величину не менее 3/4T, где T – период зондирующего сигнала, полученные при этом значения временных интервалов t2 и t1 используют для определения расстояния до отражающей поверхности. Технический результат: снижение погрешности измерений. 2 ил.

Использование: для компенсации погрешности измерения ультразвукового локатора. Сущность изобретения заключается в том, что осуществляют излучение и прием ультразвуковых волн на двух частотах с разными периодами, измерение временных интервалов между излученными и принятыми ультразвуковыми волнами, определение расстояния до отражателя путем умножения скорости распространения ультразвука в контролируемой среде на время его распространения, при этом при усилении принятых ультразвуковых волн амплитуду сигналов задают одинаковой для обеих частот, а после измерения временных интервалов между излученными и принятыми ультразвуковыми волнами на двух частотах, определяют время распространения принятых ультразвуковых волн в соответствии с заданным выражением, полученное значение используют при определении расстояния до отражателя. Технический результат: обеспечение возможности снижения погрешности измерений при волноводном распространении ультразвуковых колебаний. 2 ил.

Использование: для компенсации погрешности измерения ультразвукового локатора. Сущность изобретения заключается в том, что устройство компенсации погрешности измерения ультразвукового локатора содержит блок управления и индикации, который соединен с первым и вторым генераторами. Первый генератор соединен с первым датчиком излучения и приема, который соединен с первым усилителем, к которому последовательно подключены первое пороговое устройство, первый блок формирования, первый блок измерения временного интервала, блок управления и индикации. Второй генератор соединен с вторым датчиком излучения и приема, который соединен со вторым усилителем, к которому последовательно подключены второе пороговое устройство, второй блок формирования временного интервала, второй блок измерения временного интервала, блок управления и индикации. К первому и второму пороговому устройствам подключен источник опорного напряжения. Блок управления и индикации подключен к первому и второму блокам формирования временного интервала. Блок временной регулировки усиления подключен к первому и второму усилителям и к блоку управления и индикации. Технический результат: снижение погрешности измерения, обусловленной наличием недостаточной амплитуды отраженного сигнала. 2 ил.

Использование: в области электротехники. Технический результат – обеспечение контроля электрических параметров источника в процессе его работы у потребителя. Устройство для контроля параметров вторичного источника бесперебойного питания содержит компьютер, подключенный к микроконтроллеру, выход которого соединен с запоминающим устройством, а входы подключены к аналого-цифровому преобразователю и генератору, управляемому напряжением, который связан с блоком сжатия. Блок сжатия содержит четыре дифференцирующих усилителя, выходы которых подключены к сумматору, который связан с генератором, управляемым напряжением, а входы дифференцирующих усилителей подключены к входам аналого-цифрового преобразователя и выходам согласующего устройства, к входам которого подключены входная сеть и выход вторичного источника бесперебойного питания, вход которого подключен к входной сети, а выход - к нагрузке. 3 ил.

Изобретение относится к области измерения электрических величин, а именно к измерению токов и напряжений при испытаниях и проверке источников бесперебойного питания, и может быть использовано в испытательных стендах космических аппаратов. Способ заключается в том, что в процессе работы у потребителя производят измерение входного и выходного токов и напряжений вторичного источника бесперебойного питания только при изменении его входных или выходных параметров. Затем определяют первую производную этих сигналов, на основе которых, предварительно определив частоту аналого-цифровых преобразований, производят аналого-цифровое преобразование входного и выходного токов и напряжений, сохраняют полученные значения и производят их анализ, на основании которого определяют потребляемую и отдаваемую в нагрузку мощности и оценивают длительность переходного процесса. Техническим результатом при реализации заявленного решения является разработка способа контроля параметров вторичного источника бесперебойного питания в процессе его работы у потребителя. 3 ил.

Изобретение относится к измерительной технике, а именно неразрушающему контролю, и может быть использовано для измерения тепловых параметров полупроводниковых приборов после изготовления и монтажа на радиатор охлаждения. Сущность: устройство для измерения теплового сопротивления между корпусом полупроводникового прибора и радиатором охлаждения содержит микроконтроллер, соединенный с оптическим излучателем, который оптически связан с оптическим приемником, выход которого подключен к входу микроконтроллера, который соединен с компьютером. Корпус контролируемого полупроводникового прибора через слой теплопроводящей пасты прикреплен к радиатору охлаждения, который размещен в емкости, наполненной диэлектрической жидкостью так, что нижняя часть радиатора охлаждения погружена в диэлектрическую жидкость, а корпус полупроводникового прибора расположен выше ее уровня. Радиатор охлаждения расположен между оптическим излучателем и оптическим приемником, которые прикреплены изнутри емкости к ее противоположным стенкам выше уровня диэлектрической жидкости так, что их оптические оси совпадают и направлены навстречу друг другу. Емкость установлена на нагревателе. К корпусу полупроводникового прибора и к радиатору охлаждения подключен усилитель, который связан с аналого-цифровым преобразователем, который соединен с микроконтроллером. Технический результат: возможность измерения теплового сопротивления между корпусом любого полупроводникового прибора и радиатором его охлаждения после установки полупроводникового прибора на радиатор, что дает информацию о наличии и качестве нанесения теплопроводящей пасты между полупроводниковым прибором и радиатором охлаждения без снятия радиатора до введения полупроводникового прибора в эксплуатацию. 1 ил.

Изобретение относится к измерительной технике, а именно к неразрушающему контролю, и может быть использовано для измерения тепловых параметров полупроводниковых приборов после изготовления и монтажа на радиатор охлаждения. Предложен способ измерения теплового сопротивления между корпусом полупроводникового прибора и радиатором охлаждения, который заключается в том, что закрепляют корпус контролируемого полупроводникового прибора на радиаторе охлаждения через слой теплопроводящей пасты. Радиатор охлаждения размещают в нагретой жидкости, температура которой не более 75% от предельной температуры нагрева полупроводникового прибора, причем корпус полупроводникового прибора располагают выше уровня нагретой жидкости. Измеряют n значений напряжений термоЭДС между корпусом полупроводникового прибора и радиатором охлаждения, усиливают их, производят аналого-цифровое преобразование, сохраняют и определяют n значений температур корпуса полупроводникового прибора по формуле: где ЕЕЭДСi - измеренная термоЭДС в конце i временного интервала, Тро - температура радиатора охлаждения, помещенного в нагретую жидкость, α - коэффициент Зеебека, i - текущий индекс, изменяется от 0 до n, i и n - натуральный ряд чисел, а затем среднее значение теплового сопротивления по формуле: , где С - теплоемкость корпуса полупроводникового прибора, t0 - время начала процесса нагрева корпуса полупроводникового прибора, ti=(Δt⋅i) - временные интервалы в процессе нагрева корпуса полупроводникового прибора, Δt - значение временного интервала, Т0 - температура корпуса полупроводникового прибора перед началом измерения, ТППi - температура корпуса полупроводникового прибора в конце i временного интервала. Технический результат - повышение информативности получаемых данных измерений, так как способ позволяет измерять тепловое сопротивление между корпусом любого полупроводникового прибора и радиатором охлаждения после установки полупроводникового прибора на радиатор охлаждения, что дает информацию о наличии и качестве нанесения теплопроводящей пасты между полупроводниковым прибором и радиатором охлаждения без снятия радиатора охлаждения до введения полупроводникового прибора в эксплуатацию. 1 ил.

Использование: для ультразвуковой томографии. Сущность изобретения заключается в том, что устройство ультразвуковой томографии содержит персональный компьютер, соединенный с микроконтроллером, к которому последовательно подключены многоканальный генератор, антенная решетка, многоканальный усилитель, многоканальный аналого-цифровой преобразователь, оперативное запоминающее устройство, при этом устройство дополнительно содержит многоканальный блок вычисления скорости изменения каждого ультразвукового сигнала, подключенный к выходу многоканального усилителя и к входу многоканального генератора, управляемого напряжением, который связан с тактовым входом многоканального аналого-цифрового преобразователя. Технический результат: обеспечение возможности уменьшения объема передаваемых данных без потери информации и за счет этого обеспечение возможности проведения контроля в реальном масштабе времени. 1 ил.

Использование: для ультразвуковой томографии. Сущность изобретения заключается в том, что осуществляют размещение пьезопреобразователей антенной решетки на объекте контроля, циклическое ультразвуковое облучение объекта контроля поочередно каждым пьезопреобразователем антенной решетки и одновременный прием ультразвуковых волн и их преобразование в электрические сигналы всеми преобразователями антенной решетки, усиление и преобразование в цифровые коды полученных электрических сигналов, их сохранение, когерентную обработку сохраненных цифровых кодов, при которой разбивают объект контроля на локальные области, которые рассматривают в качестве локального сосредоточенного отражающего элемента, сохраненные цифровые коды сдвигают назад во времени на величину, равную времени распространения отраженной волны от рассматриваемой локальной области до соответствующего пьезопреобразователя антенной решетки, затем перемножают сдвинутые во времени цифровые коды соответственно для каждой из локальных областей, сохраняют полученные произведения цифровых кодов и используют их для реконструкции изображения и его визуализации, при этом после преобразования ультразвуковых волн в электрические сигналы всеми преобразователями антенной решетки и их усиления определяют скорость изменения каждого электрического сигнала, которую используют для вычисления периода преобразования полученных электрических сигналов в цифровые коды. Технический результат: обеспечение возможности уменьшения объема данных без потери качества изображения и обеспечение возможности работы в режиме реального времени. 1 ил.

Изобретение относится к области неразрушающей диагностики металлов и сплавов, а также изделий, выполненных из них, при разбраковке металлических изделий. Предложено устройство для контроля контакта электродов с контролируемым изделием при разбраковке металлических изделий, которое содержит нагреватель, воздействующий на нагреваемый электрод, холодный электрод, связанные с контролируемым изделием и усилителем постоянного тока, который соединен с первым индикатором и компаратором. Компаратор соединен с вторым индикатором и регулятором порога. Коммутатор связан с нагреваемым и холодным электродами и последовательно соединенными первым генератором переменного тока, первым избирательным усилителем, первым детектором, первым АЦП и микроконтроллером, а также последовательно соединенными вторым генератором переменного тока, вторым избирательным усилителем, вторым детектором, вторым аналого-цифровым преобразователем, микроконтроллером и индикатором прижима. Техническим результатом является повышение точности измерения термоЭДС. 1 ил.

Изобретение относится к области неразрушающего контроля и может быть использовано для предупреждения пожара при неисправности в электрической сети. Устройство неразрушающего контроля неисправностей в электрической сети содержит вводной щит, к которому через электрическую сеть и переходное сопротивление подключена электроустановка, к которой подключен блок измерения суммарного тока. Блок питания подключен к блоку измерения суммарного тока, к блоку усиления, к блоку сравнения величины накопленного сигнала с заданным значением и к блоку формирования сигнала пожароопасности. К блоку измерения суммарного тока в электрической сети подключен фильтр низких частот, соединенный с блоком питания и блоком усиления, который соединен с блоком сравнения величины накопленного сигнала с заданным значением, к которому подключен блок формирования сигнала пожароопасности. К блоку сравнения подключен регулятор порога, который соединен с блоком питания. Блок измерения суммарного тока соединен с вводным щитом. Технический результат: обеспечение неразрушающего контроля неисправности в электрической сети для предупреждения пожара. 1 ил., 1 табл.

Изобретение относится к области неразрушающего контроля и может быть использовано для предупреждения пожара при неисправности в электрической сети. Способ неразрушающего контроля неисправностей в электрической сети включает соединение вводного щита через переходное сопротивление с электроустановкой. Возникшее суммарное напряжение электрической сети уменьшают, фильтруют, выделяя термоЭДС, которую усиливают и сравнивают с заданным значением напряжения, принятым для соответствующей степени пожароопасности электрической сети, формируют сигнал предупреждения о возникновении пожароопасной ситуации. Технический результат: расширение арсенала технических средств для контроля неисправностей в электрической сети за счет возможности распознавания в защищаемой цепи большого переходного сопротивления в безыскровом режиме. 1 ил., 1 табл.

Изобретение относится к области неразрушающей диагностики металлов и сплавов, а также изделий, выполненных из них при разбраковке металлических изделий. Способ заключается в том, что между нагреваемым электродом и контролируемым изделием измеряют термоЭДС, усиливают ее и отображают, сравнивают с пороговым значением и через контакт нагреваемого электрода с контролируемым изделием пропускают переменный ток и измеряют величину падения напряжения на контакте нагреваемого электрода с контролируемым изделием на двух частотах. Полученное напряжение выделяют с помощью двух избирательных усилителей с резонансными частотами f1 и f2. Детектируют эти напряжения и сравнивают их между собой и при их равенстве делают заключение об отсутствии емкостной составляющей контактного сопротивления. Технический результат - повышение точности измерения термоЭДС. 1 ил.

Изобретение относится к области неразрушающего контроля и может быть использовано для контроля шероховатости поверхностного слоя металла контролируемого изделия. Устройство для неразрушающего контроля шероховатости поверхностного слоя металла содержит нагреватель с возможностью теплового контакта с первым и вторым нагреваемыми электродами и последовательно соединенные первый нагреваемый электрод, эталонный образец, контролируемое изделие, второй нагреваемый электрод. Электроды подключены к гальванометру. Первый нагреваемый электрод подключен к первому блоку измерения температуры, который соединен с микроконтроллером. Второй нагреваемый электрод соединен с вторым блоком измерения температуры, который соединен с микроконтроллером, первый выход которого подключен к блоку управления нагревателем, выход которого подключен к нагревателю. Второй выход микроконтроллера подключен к индикатору. Технический результат - контроль шероховатости поверхностного слоя металла разных плавок. 2 ил., 1 табл.

 


Наверх