Патенты автора Мазлумян Григорий Сергеевич (RU)

Изобретение относится к области машиностроения, в частности к устройствам для загрузки изделий в шахтную пусковую установку. Устройство содержит первый и второй рабочие гидроцилиндры. Первый рабочий цилиндр установлен с использованием вертикальной стойки и связан с перемещаемым с его помощью изделием. Вертикальная стойка выполнена в виде рамы с вертикальными и поперечными элементами. Каждый гидроцилиндр оснащен жестко закрепленными на нем сверху двумя актуаторами с приводом. Ось актуатора перпендикулярна оси гидроцилиндра. Шток актуатора имеет зацеп с возможностью контакта с поперечными элементами вертикальной стойки. Оба рабочих гидроцилиндра ориентированы параллельно и симметрично относительно оси изделия и жестко связаны своими штоками с изделием посредством каретки. Каретка жестко закреплена на цилиндрической поверхности изделия с помощью болтового соединения. На корпусе каждого рабочего гидроцилиндра жестко закреплены зацепы для обеспечения возможности перемещения вдоль вертикальных элементов стойки в качестве направляющих. Достигается обеспечение загрузки изделий в шахтную пусковую установку без использования дополнительных средств. 2 з.п. ф-лы, 9 ил.

Изобретение относится к стендам для испытаний гидроагрегатов. Стенд содержит гидросистему в виде емкости с рабочей жидкостью и насосом, датчики крутящего момента, датчики угловой скорости, датчик давления, приводной электродвигатель, подключенные к управляющему блоку. Приводной электродвигатель соединен с гидроагрегатом. Гидроагрегат установлен на ведущем валу. Электротормоз установлен на ведомом валу гидроагрегата. В стенде предусмотрено регулирующее устройство, которое выполнено в виде вентильно-индукторного электропривода, установленного на ведомом валу. Достигается повышение качества регулирования гидроагрегатов передач. 1 ил.

Изобретение относится к области машиностроения, а именно к устройствам для испытаний и измерений динамических характеристик агрегатов передач, преимущественно гидротрансформаторов. Стенд содержит размещенные на раме 1 приводной электродвигатель 2 и нагрузочное устройство, выполненное в виде электротормоза 3, которые соединены с испытуемым агрегатом - магнитожидкостным гидротрансформатором 4 с помощью ведущего и ведомого валов 5 и 6, соответственно. Для заправки полостей испытуемого гидротрансформатора 4 предусмотрена гидросистема в виде емкости 7 с рабочей жидкостью и насоса 8, соединенные с испытуемым гидротрансформатором 4 с помощью напорной и сливной магистралей 9 и 10, соответственно. Для регулирования измерений и снятия показаний в состав стенда входят управляющий блок 13 и соединенные с ним датчики 12 крутящего момента, датчики 14 угловой скорости и датчик 15 давления. При этом в качестве рабочей жидкости в гидротрансформаторе используется магнитная жидкость, а регулирующее устройство выполнено в виде ряда электромагнитных катушек 16, установленных на раме 1 в плоскости вращения испытуемого гидротрансформатора 4. При работе стенда сигнал от управляющего блока 13 поступает на электромагнитные катушки 16, которые формируют электромагнитное поле, воздействующее на рабочую магнитную жидкость, изменяя ее вязкость и плотность до момента выравнивания угловых скоростей ведущего и ведомого валов 5 и 6, соответственно. Изобретение позволяет проводить испытания магнитожидкостных гидротрансформаторов для оценки влияния на их выходные характеристики регулирующего магнитного поля при упрощении конструкции стенда. 1 ил.

Способ повышения сцепных свойств колес автомобиля заключается в том, что при помощи органа управления передают сигнал по электропроводам на исполнительный элемент, которым воздействуют на механическую муфту, посредством которой прижимают вращательное устройство к боковой поверхности ведущего колеса, при этом, используя крутящий момент ведущего колеса, приводят в движение вращательное устройство, которым разматывают металлические цепи в направлении непосредственно между ведущим колесом и дорожным полотном. Технический результат - повышение сцепных свойств колес автомобиля с дорожным полотном, улучшение показателей подвижности колесного транспортного средства, исключение порчи дорожного полотна. 1 ил.

Изобретение относится к способам работы трансмиссий транспортных средств. Гидродинамическая передача содержит корпус (2), заполненный рабочей жидкостью, насосное и турбинное колеса (3) и (4), реактор (5), двигатель (1) внутреннего сгорания, коробку (6) переключения передач с ведущим и ведомым валами (7) и (8), а также управляющую систему (12). Управляющая система (12) состоит из блока (13) управления, тахометров (14) и (15), расположенных на ведущем и ведомом валах (7) и (8), и вентильно-индукторного электропривода (9). В состав последнего входят статор (10) и ротор (11), при этом ротор (11) жестко скреплен с ведомым валом (8). При работе двигателя (1) крутящий момент от ведущего вала (7) посредством гидротрансформатора передается на ведомый вал (8) и коробку (6) переключения передач. При изменении нагрузки на ведомом валу (8) возникает разность угловых скоростей на ведущем и ведомом валах (7) и (8), которую определяет блок (13) управления управляющей системы (12). При этом сигнал передается от блока (13) управления на статор (10) вентильно-индукторного электропривода (9). Формируется вращающееся электромагнитное поле, обеспечивающее дополнительное вращение ротора (11) и ведомого вала (8). Сигнал перестает поступать от блока (13) управления управляющей системы (12) на статор (10) вентильно-индукторного электропривода (9), происходит последующее плавное выравнивание крутящего момента на ведущем и ведомом валах (7) и (8). Достигается снижение механических потерь. 1 ил.

Изобретение относится к способу работы гидродинамических передач транспортных средств. Гидродинамическая передача содержит корпус (2), заполненный рабочей жидкостью, насосное и турбинное колеса (3) и (4), реактор (5), двигатель (1) внутреннего сгорания, коробку (6) переключения передач с ведущим и ведомым валами (7) и (8). Также гидродинамическая передача содержит управляющую систему (14) в виде блока (15) управления, тахометров (16) и (17), расположенных на ведущем и ведомом валах (7) и (8), магнитной муфты (9), имеющей в своем составе внешний и внутренний магнитные роторы (10) и (11). Первый из них подвижно закреплен относительно корпуса (2) гидротрансформатора, а последний - жестко скреплен с турбинным колесом (4) и ведомым валом (8). Блок (15) управления содержит ременную передачу (12) и электродвигатель (13). Способ заключается в том, что при работе двигателя (1) крутящий момент от ведущего вала (7) посредством гидротрансформатора передается на ведомый вал (8) и коробку (6) переключения передач. При изменении нагрузки на ведомом валу (8) возникает разность угловых скоростей на ведущем и ведомом валах (7) и (8), которую определяет блок (15) управления управляющей системы (14), появляются механические потери в корпусе (2) гидротрансформатора. При этом сигнал передается от блока (15) управления на электродвигатель (13), при работе которого крутящий момент посредством ременной передачи (12) передается на внешний магнитный ротор (10) магнитной муфты (9), вращающийся относительно корпуса (2) гидротрансформатора. Формируется вращающееся электромагнитное поле, обеспечивающее дополнительное вращение внутреннего магнитного ротора (11), жестко скрепленного с турбинным колесом (4) и ведомым валом (8) относительно внешнего магнитного ротора (10). Сигнал перестает поступать от блока (15) управления управляющей системы (14) на внешний магнитный ротор (10) магнитной муфты (9), происходит последующее плавное выравнивание крутящего момента на ведущем и ведомом валах (7) и (8). Достигается снижение механических потерь при работе гидротрансформатора и повышение его мощности. 1 ил.

Изобретение относится к машиностроению. Регулируемый гидротрансформатор содержит корпус, заполненный рабочей жидкостью, с размещенными в нем насосным и турбинным колесами, а также реактором. Насосное и турбинное колеса жестко связаны с ведущим и ведомым валами. Гидротрансформатор снабжен вентильно-индукторным электроприводом и управляющей системой, состоящей из блока управления, датчиков угловой скорости, а также блока преобразования питания. Датчики угловой скорости установлены на ведущем и ведомом валах. Вентильно-индукторный электропривод выполнен в виде статора, установлен на внешней поверхности корпуса гидротрансформатора и подключен к блоку преобразования питания. На турбинном колесе установлен пакет из листового магнитомягкого материала с возможностью взаимодействия со статором посредством вращающегося электромагнитного поля. Снижаются механические потери. 1 ил.

Изобретение относится к машиностроению. В способе работы трансмиссии автомобиля при работе двигателя крутящий момент от ведущего вала посредством гидротрансформатора передают на ведомый вал и коробку переключения передач, осуществляя при этом регулирование угловых скоростей до момента их последующего выравнивания на ведущем и ведомом валах. Трансмиссию дополнительно снабжают устанавливаемой на ведомом валу магнитной муфтой с внешним и внутренним магнитными роторами, а также электродвигателем. Контролируют угловые скорости ведущего и ведомого валов, в соответствии с которыми управляют вращающимся электромагнитным полем, возникающим между внешним магнитным ротором, жестко связанным с валом электродвигателя посредством гибкой связи, и жестко скрепленным с ведомым валом внутренним магнитным ротором магнитной муфты. При выравнивании угловых скоростей ведущего и ведомого валов электродвигатель отключают. Снижаются механические потери. 1 ил.

 


Наверх