Патенты автора Бархатов Виктор Иванович (RU)

Изобретение относится к медицинской технике, а именно к способу улучшения эпидемической безопасности в комнатах переговоров и в офисных помещениях. Для его реализации используют теплоизолированные помещения, каждое из которых оборудуют освещением, ионизатором, увлажнителем воздуха, приточной вентиляцией с управляемым охлаждением, подогревом и ультрафиолетовой дезинфекцией потока воздуха, вытяжной вентиляцией, снабженной конусообразными приемными зонтами вытяжной вентиляции, воздушным фильтром и клапаном обратного хода воздуха. По центру каждого теплоизолированного помещения размещают рабочие столы, с круговой формой их расстановки. За рабочими столами по их периметру на одинаковом расстоянии друг от друга оборудуют индивидуальные рабочие места. Конусообразные приемные зонты вытяжной вентиляции размещают над центром поверхности рабочих столов, а в центральной области рабочих столов устанавливают ионизатор и увлажнитель воздуха таким образом, чтобы исходящие из них потоки воздуха были направлены вертикально вверх. Через выпускной воздуховод приточной вентиляции подают воздух в сопла, каждое из которых размещают в незанятой рабочими столами центральной зоне на одинаковом расстоянии от каждого индивидуального рабочего места, а также - посредине между соседними индивидуальными рабочими местами. С помощью сопел формируют направленные вверх вертикальные восходящие воздушные потоки воздуха с регулируемой скоростью в пределах 0.1 м/с - 2 м/с. В центральной области поверхности рабочих столов на расстоянии не менее 1 м от индивидуальных рабочих мест устанавливают ориентированные вертикально вверх направленные инфракрасные излучатели с плотностью потока мощности не менее 1,5 кВт/м2. Работой вытяжной вентиляции, увлажнителя воздуха, охладителя и подогревателя воздуха приточной вентиляции и регулированием скорости восходящих вертикально вверх потоков воздуха управляют вручную или с помощью системы климат-контроля помещения. Техническим результатом изобретения является создание способа, обеспечивающего повышение эффективности и безопасности дезинфекции воздуха от воздушно-капельной и воздушно-пылевой инфекции в комнатах переговоров и в офисных помещениях, в частности, за счет уменьшения влияния горизонтальных составляющих потоков воздуха, переносящих инфекцию между людьми. 4 з.п. ф-лы, 5 ил.

Изобретение относится к области металлургической и химической технологии неорганических веществ, а именно к переработке марганецсодержащих отходов, и может быть использовано также в производстве содержащих марганец продуктов. Железо- и марганецсодержащие пигменты получают из отходов производств, включающих марганецсодержащие соединения, окислитель, барийсодержащее соединение, при этом в качестве марганецсодержащих соединений используют шлам доменного производства, содержащий марганец, железо и оксиды кремния, алюминия, кальция, магния, железа и марганца в количестве 28-31 мас.%, в качестве окислителя - отработанный сернокислый раствор, содержащий 2-5% H2SO4 и 18-20% Fe2SO4, в количестве 47-48 мас.%, в качестве барийсодержащего соединения - технический оксид бария в количестве 14-15 мас.% и дополнительно доломитовую пыль-уноса в количестве 8-9 мас.%, причем переработку отходов ведут в две стадии, на первой из которых шлам доменного производства обрабатывают отработанным сернокислым раствором до рН 4,0-4,5, проводят нейтрализацию полученной суспензии добавкой доломитовой пыли-уноса до рН 7,0-7,5, отделяют от суспензии осадок, который сушат в комбинированной сушилке «кипящего слоя» при температуре 320-340°С с избытком кислорода и одновременно измельчают до размера частиц 10-15 мкм с получением железооксидного пигмента красного цвета; а на второй стадии к отделенному от осадка фильтрату добавляют доломитовую пыль-уноса, после окончания реакций от полученной суспензии отделяют марганецсодержащий осадок, который смешивают с техническим оксидом бария и передают в комбинированную сушилку «кипящего слоя», в которой при температуре 500-550°С смесь термообрабатывают с избытком кислорода и одновременно измельчают до размера частиц 10-15 мкм с получением пигмента зеленого цвета. Дополнительно из фильтрата, отделенного от марганецсодержащего осадка, выпаривают избыточную воду при температуре ниже 20°С, получают кристаллогидрат сульфата магния, который отделяют от полученной суспензии, направляют в комбинированную сушилку «кипящего слоя», в которой его сушат при температуре 110°С, одновременно измельчая до размера частиц 50-60 мкм. Технический результат состоит в получении пигментов высокого качества и снижении расхода дефицитного сырья. Кроме того, данная технология позволяет также получать кристаллогидрат сульфата магния - эпсомит, обладающий высокой прочностью и термостойкостью. 1 ил., 2 табл., 2 пр.

Изобретение относится к производству строительных материалов, в частности к получению теплоизоляционных изделий, и может быть использовано при производстве теплоизоляционного материала, легкого бетона, а также плит для защиты термических печей и вагонеток. Способ получения теплоизоляционного материала включает тщательное перемешивание, измельчение и термообработку в три этапа компонентов композиции, включающей, мас.%: отход производства жидкого стекла – шлам отстойников после пылеуловителей, содержащий, мас.%: NaSiO3 - 0,83; NаOH - 0,54; CаO - 0,61; Al2O3 - 1,83; Cr2O3 - 7,25; SiO2 - 60,1 - 67,6; H2O – остальное, 30–35, золу-уноса 31–32, твердую едкую щелочь 20–21, пыль-уноса, получаемую при прокаливании известняка, 4–5, отход – асбестококс с размером частиц 1-2 мм, 5–6 мм, воду - остальное; причем на первом этапе смешивают в реакторе отход производства жидкого стекла с твердой едкой щелочью при повышении температуры до 60°С и рН до 9,0 с образованием жидкого стекла с примесями оксидов кальция, алюминия и хрома, добавляют расчетное количество золы-уноса, повышают температуру до 140-150°С и рН до 9,5 в течение 4-5 ч и получают алюмосиликатный клей-связку в виде суспензии, которую передают в двухвалковый смеситель; на втором этапе измельченный в дисмембраторе до размера частиц 1-2 мм асбестококс смешивают в заданных объемах с пылью-уноса известняка, воды и конденсата, передают в двухвалковый смеситель к суспензии, после окончания перемешивания смесь поступает на третий этап в комбинированную сушилку «кипящего слоя», где ее сушат при температуре 190-210°С и одновременно измельчают до 10-15 мкм, затем получают теплоизоляционный материал салатного цвета, содержащий алюмосиликатный клей-связку и глиноземистый цемент. Технический результат – повышение прочности, возможность получения теплоизоляционного материала салатного цвета, упрощение технологического процесса его получения, утилизация отходов. 1 ил., 2 табл., 2 пр.

Изобретение относится к технологии получения жаростойкой бетонной смеси и изделий на ее основе, применяемых в металлургической и химической промышленности, а также при эксплуатации теплоизоляционных агрегатов. Технической задачей предлагаемого изобретения является улучшение экологии окружающей среды, повышение жаропрочности изделий. Способ получения жаростойкой бетонной смеси характеризуется тем, что процесс ведут в три стадии: на первой стадии в мешалке осуществляют смешивание с водой пыли нефелинового концентрата и затем полученную суспензию нагревают до температуры 110°С, после чего в работающую мешалку подают пыль ферросиликохрома, перемешивают ее с суспензией и нагревают смесь до температуры 150°С в течение 4-5 часов, полученную алюмосиликатную клей-связку передают на вторую стадию в двухвалковый смеситель, в котором смешивают с измельченным в дезинтеграторе до крупности 2-3 мм мартеновским шлаком, где дополнительно происходит образование трехкальциевого алюмината С3А, затем смесь передают на третью стадию в комбинированную сушилку «кипящего слоя», где ее сушат при температуре 150°С в течение 4-5 часов и одновременно измельчают до величины частиц 1 мм с образованием трехкальциевого гидроалюмината, причем соотношение исходных компонентов отходов составляет, масс.%: пыль нефелинового концентрата 55-60, пыль микрокремнезема 10-11, мартеновский шлак 20-23, техническая вода - остальное. Также описан способ изготовления жаростойких бетонных изделий из бетонной смеси. 2 н.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к утилизации отработанных сернокислых травильных растворов металлургических и машиностроительных производств. В способе отработанный сернокислый раствор травления металлов нейтрализуют с помощью отсева электросталеплавильного шлака при следующем соотношении, мас.%: отработанный сернокислый раствор травления металлов 74-76, отсев электросталеплавильного шлака 24-26. Нейтрализацию осуществляют при повышении температуры до 80-90°С и рН 7,0-7,5 с получением суспензии, содержащей сульфаты кальция, магния и гидроксида железа, которую охлаждают до 20°С, передают в вакуум-кристаллизатор. Получают кристаллогидраты сульфатов кальция и магния, которые совместно с непрореагировавшими оксидами кремния, алюминия, кальция отделяют центрифугой и подают в комбинированную сушилку кипящего слоя для их измельчения до размера частиц 15-20 мкм и одновременной сушки при температуре 140-350°С с получением вяжущего. При температуре сушки 140°С получают вяжущее с желтым железо-оксидным пигментом, а при температуре сушки 350°С - с красным железо-оксидным пигментом. Обеспечивается переработка отработанного сернокислого раствора травления металлов с получением вяжущего, пригодного для изготовления повышенной прочности строительных материалов наружного применения. 1 табл., 2 пр., 1 ил.

Изобретение относится к способу получению биоцида и других продуктов на основе отходов производств, который может быть использован в различных защитных от биологических воздействий покрытиях. Шлам травления латуни соляной кислотой и доломитовую пыль уноса перерабатывают с получением оксида цинка, кристаллогидратов хлоридов магния и кальция и биоцида - оксида меди. Шлам смешивают с оксидом цинка в реакторе с дистиллированной водой с получением суспензии, которую фильтруют с образованием осадка - оксида меди и первого фильтрата. Осадок промывают, затем сушат и измельчают в среде дымовых газов от сжигания природного газа с недостатком кислорода с получением биоцида - одновалентного оксида меди. Первый фильтрат смешивают с доломитовой пылью уноса в реакторе c получением суспензии, которую фильтруют с образованием осадка - оксида цинка с примесью хлоридов и второго фильтрата. Осадок промывают, затем сушат и измельчают с получением оксида цинка. Второй фильтрат охлаждают с образованием кристаллогидрата хлорида магния, который отделяют центрифугой. Фильтрат после отделения из него кристаллогидрата хлорида магния сушат и охлаждают с получением кристаллогидрата хлорида кальция с размером частиц 200-250 мкм. Способ обеспечивает получение высокого качества биоцида, оксида цинка и кристаллогидратов хлоридов магния и кальция. 1 ил., 5 табл.

Изобретение относится к гидрометаллургии тяжелых металлов и может быть использовано для извлечения соединений металлов с получением на их основе товарных продуктов. Из отходов металлургических производств, представляющих собой 67-70 мас.% гипсосодержащего шлама, 28-30 мас.% абгазовой соляной кислоты и 2-3 мас.% доломитовой пыли уноса получают гипсовое вяжущее. Гипсосодержащий шлам обрабатывают в реакторе абгазовой соляной кислотой с получением суспензии, содержащей хлорид железа и гипс. Полученную суспензию разделяют на шлам, содержащий гипс и 20-25% раствор хлорида железа, и жидкий коагулянт в виде раствора хлорида железа. Нейтрализацию полученного шлама проводят в реакторе с доломитовой пылью уноса до достижения рН 7,5-8,0 с образованием смеси, содержащей хлориды магния и кальция с примесью оксида железа. Полученную смесь охлаждают в двухвалковом смесителе с получением суспензии, содержащей кристаллогидраты хлорида магния и хлорида кальция. Причем кристаллогидрат хлорида магния образуется при температуре ниже 116,9°С, а кристаллогидрат хлорида кальция - при температуре ниже 30,2°С. Суспензию сушат при температуре 110-120°С в течение 15-20 мин в комбинированной сушилке кипящего слоя и измельчают до размера 4-5 мм с получением гипсового вяжущего, содержащего гипс, хлорид магния и хлорид кальция. Способ обеспечивает повышение прочности получаемого вяжущего. 1 ил., 1 табл.

Изобретение относится к производству искусственных керамических камней и может быть использовано при изготовлении огнеупорного кирпича. Технический результат заключается в повышении прочности и морозостойкости изделий. Способ заключается в перемешивании огнеупорной глины, шлама доменного производства, низкоуглеродистого феррохромового шлака, отсева горелой породы, жидкого стекла и воды с последующим измельчением, увлажнением шихты до формовочной влажности, пластичным ее формованием, резкой полученного бруса на заготовки, сушкой и обжигом заготовок при температуре 950-1000°С, при следующем соотношении, мас.%: огнеупорная глина - 25-30, шлам доменного производства - 13-14, низкоуглеродистый феррохромовый шлак - 12-13, отсев горелой породы - 24-25, жидкое стекло - 7-8, вода - остальное.1 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к способам производства бетонной смеси и жаростойких бетонных изделий, пригодных для изготовления футеровки промышленных тепловых и огнеупорных агрегатов, работающих при температуре до 1300°С, в частности для футеровки вагонеток обжига кирпича и других теплоизоляционных агрегатов. Технической задачей предлагаемого изобретения является применение для изготовления жаростойкой бетонной смеси отходов производства, перерабатываемых с невысокими энергозатратами, и получение жаростойких бетонных изделий на ее основе с более высокой прочностью и термостойкостью. Способ изготовления жаростойкой бетонной смеси на основе базовых компонентов, содержащих алюмосиликатную связку, причем в качестве базовых компонентов используют отходы производства, мас.%: золу Троицкой ГРЭС - 13,8…14,8, электросталеплавильный шлак - 14,8…15,2, раствор травления сплава алюминия - 41,9…42,6, и отвальный шлак медеплавильного производства - 27,4 или 29,5. Процесс изготовления ведут в три стадии: на первой стадии подвергают термообработке в реакторе при температуре 145…150°С и рН 7,7…8,5 в течение 3 ч, смесь золы ГРЭС, электросталеплавильного шлака и отработанного раствора травления силумина, при этом образуется алюмосиликатная связка, которую передают на вторую стадию в быстроходный смеситель, в то же время для второй стадии измельчают в дисмембраторе отвальный шлак медеплавильного производства до размера частиц 5…8 мм и передают к алюмосиликатной связке, полученную смесь перемешивают и передают на третью стадию в комбинированную сушилку «кипящего слоя», в которой ее сушат при температуре 145…150°С в течение 15…20 мин и одновременно измельчают до размера частиц 3…5 мм. Также описан способ изготовления изделий из жаростойкой бетонной смеси на основе базовых компонентов, содержащих алюмосиликатную связку, вышеуказанным способом. 2 н.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к промышленности строительных материалов, а именно к способам приготовления кирпичных глазурей, наносимых на керамический кирпич, применяемый для выполнения конструкционных декоративных функций, для отделки внутренних стен вестибюлей, лестничных клеток, переходов, интерьеров отдельных архитектурных элементов зданий и фасадов. Технический результат - возможность применения глазури для всех видов керамических кирпичей, а также повышение ее прочности и морозостойкости. В способе получения кирпичной глазури в качестве шихты берут смесь, содержащую, мас %: легкоплавкую глину 30-40; доменный шлак 17-20; микрокремнезем 13-15; отсев горелой породы 12-15; пыль уноса 13-15; воду остальное, а процесс приготовления глазури ведут в три стадии. На первой стадии измельчают доменный шлак и отсев горелой породы с добавкой воды до размера частиц 50-60 мкм. На второй стадии смешивают полученную суспензию с кремнеземом, пылью уноса и предварительно измельченной до 55-60 мкм легкоплавкой глиной. На третьей стадии распыляют эту суспензию в верхнюю часть печи «кипящего слоя» и ведут термообработку при температуре 950-1100°С в течение 30-40 минут. 1 ил., 2 табл.

Изобретение относится к утилизации отработанных сернокислых травильных растворов металлургических и машиностроительных производств. В способе в реактор с отработанным сернокислым раствором вначале добавляют шлам хлорида кальция и после достижения рН, равного 5,0-5,5, в реактор подают пыль-уноса известняка до рН, равного 7,0-8,0, после окончания реакций полученную суспензию передают в вакуум-кристаллизатор для образования кристаллогидратов сульфата кальция и хлорида кальция. После полученную смесь подают в центрифугу для отделения указанных кристаллогидратов, а далее в комбинированную сушилку кипящего слоя, в которой кристаллогидраты измельчают до размера 10-15 мкм и одновременно сушат в течение 15-20 мин при температуре 110-340°С для получения вяжущего, содержащего гипс с примесью кристаллогидрата хлорида кальция и железооксидного пигмента. Причем в реактор с отработанным сернокислым раствором подают шлам хлорида кальция и пыль-уноса известняка при следующем соотношении компонентов, мас. %: отработанный сернокислый раствор травления металлов 67-70, шлам хлорида кальция 20-22, пыль-уноса известняка 10-11. Изобретение обеспечивает упрощение технологической схемы переработки отработанных сернокислых растворов травления металлов, а также осуществление упомянутой переработки без применения дефицитных продуктов. 1 ил., 2 табл., 2 пр.

Изобретение относится к способам очистки от токсичных примесей пиролизного газа, других отходящих газов с получением высокого качества вяжущих - бишофита, горькой соли. Способ очистки отходящих газов от оксидов серы и хлора с получением вяжущих включает непрерывное контактирование газов в абсорбционном скруббере с циркулирующим водным абсорбентом в виде водной суспензии доломитовой пыли, подаваемой из емкости. Очищенный газ из скруббера подают в газгольдер. Отработанную суспензию из емкости направляют для переработки и получения вяжущих путем последовательного разделения на твердую и жидкую фазы. Для приготовления суспензии используют доломитовую пыль, содержащую 88,5 масс.% оксида магния. Анализируют и доводят до уровня растворимости в воде при температуре 20°С путем добавления серной и соляной кислоты. Затем в вакуум-кристаллизаторе в указанной суспензии образуются кристаллогидраты хлорида магния, которые отделяют на центрифуге и одновременно сушат при температуре 100-110°С, затем измельчают до размера частиц 200-250 мкм. Получают высокого качества вяжущее – бишофит. Отделенный фильтрат направляют в вакуум-кристаллизатор, где при температуре 20-48°С образуется кристаллогидрат сульфата магния. Его отделяют от суспензии центрифугой, сушат при температуре 100-110°С и одновременно измельчают до размера частиц 250-300 мкм в комбинированной сушилке «кипящего слоя». Получают вяжущее - горькую соль. Фильтрат используют в оборотном цикле при изготовлении доломитовой суспензии. Изобретение обеспечивает очистку отходящих и пиролизных газов не только от оксидов серы, но и от хлора, а также обеспечивает получение высокого качества вяжущих - бишофита и горькой соли, на основе которых возможно получать высокого качества строительные изделия. 1 ил., 3 табл.

Изобретение относится к производству строительных материалов, в том числе для получения керамического кирпича, и может быть использовано для изготовления различных жаростойких бетонов. Технический результат заключается в повышении прочности и морозостойкости строительного кирпича. Шихта для изготовления строительного кирпича содержит огнеупорную глину, золу ТЭЦ, шлак низкоуглеродистого феррохрома, горелую породу и воду, при следующем соотношении компонентов, масс. %: огнеупорная глина – 30-35, зола ТЭЦ – 12-15, шлак низкоуглеродистого феррохрома – 17-20, горелая порода – 18-20, вода - остальное. 1 табл.

Изобретение относится к переработке отходов коксохимического производства. Описан способ утилизации кислой смолки и отработанного поглотительного масла, с получением высокого качества горячих полимерсодержащих мастик и поглотительного масла, пригодного для улавливания бензола из коксового газа, включающий введение нейтрализующих или инициирующих реагентов, термообработку полученной смеси с отделением легколетучих продуктов и выделением из них водно-углеводородной фракции, в котором осуществляют смешивание кислой смолки с нагретым до 200°С отработанным поглотительным маслом, к указанной смеси добавляют пыль-уноса извести до рН=7,0…8,0, при температуре 270…275°С, из полученной суспензии выделяют водно-углеводородную фракцию, пары которой конденсируют, получая поглотительное масло, до достижения полученным маслом плотности 1,055 г/см3, затем оставшуюся суспензию передают в промежуточную емкость, в которой ее охлаждают до температуры 140…150°С, добавляют техническую воду и получают указанную горячую мастику, содержащую гипс повышенной прочности, причем, количественный состав реагентов равен, мас.%: кислая смолка - 40%; отработанное поглотительное масло - 40%; пыль-уноса извести - 10…12%; техническая вода - 8…10%. Технический результат - переработка отходов производства. 1 з.п. ф-лы, 2 табл., 2 пр., 1 ил.

Изобретение относится к технологии очистки сточных вод предприятий металлургической, химической и других отраслей промышленности от токсичных веществ и использованию очищенных стоков в оборотном цикле предприятий. Очистка кислых сточных вод от тяжелых металлов, включает постадийное осаждение тяжелых металлов с использованием щелочных растворов и последующее выделение осадка. На первой стадии осуществляют нейтрализацию кислых сточных вод в реакторе при температуре 70…80°С до рН 4,0…4,5 пылью уноса известняка с последующей нейтрализацией их пылью уноса доломита до рН 7,0…8,0. На второй стадии в суспензию подают в промежуточную емкость, добавляют микропыль ферросилиция, тщательно перемешивают и далее суспензию передают в радиальный отстойник, охлаждают до 25-30°С, отделяют очищенные стоки в емкость очищенной сточной воды. Твердую смесь передают на третью стадию - в комбинированную сушилку «кипящего слоя», где ее подвергают одновременно сушке при температуре 130…140°С и измельчению до 10…15 мкм в течение 25…30 мин. Изобретение обеспечивает эффективную очистку промышленных сточных вод от тяжелых металлов с одновременным получением гипса зеленого цвета. 5 табл., 1 ил.

Изобретение относится к горной промышленности и может быть использовано при разработке месторождений различных полезных ископаемых с закладкой выработанного пространства, а также для закладки различных выемок, карьеров. Техническим результатом является повышение прочности закладочной смеси, увеличение объемов утилизируемых техногенных отходов и улучшение экологии окружающей среды. Состав закладочной смеси для заполнения горных выработок включает отходный металлургический шлак и активизатор. При этом в качестве отходного шлака содержит шлак никелевого производства, в качестве активизатора - шлам активирующей добавки, получаемый нейтрализацией шлака ферросиликокальция отработанной гидролизной серной кислотой, кроме того, смесь дополнительно содержит хвосты сепарации горных выработок, при следующем соотношении, масс. %: шлак никелевого производства - 22…23; хвосты сепарации горных выработок - 66; шлам активирующей добавки - 11…12.

Изобретение относится к производству строительных материалов, в частности относящихся к получению пористых теплоизоляционных изделий, и может быть использовано при производстве теплоизоляционного материала, особо легкого бетона, а также теплоизоляционных засыпок и жаростойкой изоляции тепловых аппаратов. В способе получения теплоизоляционного материала на основе жидкого стекла, включающем тщательное перемешивание, измельчение и термообработку компонентов композиции, дополнительно применяют в качестве компонентов золу-уноса, пыль-уноса извести, полученной при прокаливании известняка, и отработанный раствор травления железа серной кислотой, при следующем соотношении компонентов, мас.%: жидкое натриевое стекло 25-30, зола-унос 42-44, пыль-уноса извести 9-12, отработанный раствор травления железа серной кислотой 18-20, причем измельчение, перемешивание и термообработку компонентов проводят в три стадии: на первой стадии в бисерной мельнице смешивают и измельчают жидкое натриевое стекло и золу-уноса до размера частиц 1-3 мм, осуществляют нагрев до температуры 150-160°С в течение 6 ч, полученную суспензию алюмосиликата натрия передают в двухвалковый скоростной смеситель; на второй стадии в реакторе с быстроходной мешалкой проводят нейтрализацию отработанного раствора травления железа серной кислотой пылью-уноса извести сначала до pН=8,5-9,0 при температуре 80-90°С и получают суспензию сульфата кальция и гидроксида железа, затем добавляют золу-уноса и проводят нейтрализацию указанной суспензии до pН=6,5-7,0 и получают суспензию, содержащую смесь гипса и алюмината кальция, которые подают в скоростной двухвалковый смеситель, в котором перемешивают с суспензией алюмосиликата натрия, на третьей стадии полученную суспензию из скоростного двухвалкового смесителя распылением подают в печь «кипящего слоя», в которой ее подвергают термообработке дымовыми продуктами с избытком кислорода при температуре 140-350°С и получают теплоизоляционный материал с размером частиц 0,6-1,0 мм, включающий вспученный алюмосиликат натрия, расширяющийся цемент - продукт взаимодействия алюмосиликата кальция с гипсом и железооксидные пигменты желтого цвета при температуре термообработки 140°С и красного цвета - при температуре термообработки 350°С. Технический результат – повышение прочности, возможность получения теплоизоляционных материалов желтого или красного цветов, утилизации отходов производств. 1 ил., 1 табл., 2 пр.

Изобретение относится к производству строительных материалов, в частности к получению пористых искусственных изделий, и может быть использовано при производстве, например, теплоизоляционных засыпок, а также гранулированного теплоизоляционного материала. Технический результат - упрощение технологии, повышение прочности теплоизоляционных материалов и применение для их получения отходов производств. В способе получения теплоизоляционного материала на основе жидкого стекла, включающем перемешивание компонентов смеси, их измельчение и термообработку, применяют смесь жидкого стекла с отходами производства при следующем соотношении компонентов смеси, мас. %: жидкое стекло с плотностью 1,30-1,50 г/см3 42-58, отработанный раствор травления щелочью сплава цинка 22-38 и отвальный цинксодержащий шлак 20, от которого предварительно отделяют металлическое железо, указанную смесь измельчают до размера частиц 1-2 мм, затем проводят термообработку в «кипящем слое» при температуре 320-350°С в течение 10-20 мин. 1 табл.

Изобретение относится к области производства высокого качества гипсового вяжущего из гипсосодержащих шламов, получаемых при нейтрализации сточных вод машиностроительных и аналогичных предприятий, пригодных для получения различного состава строительных материалов и изделий на его основе. Описан способ получения гипсового вяжущего из гипсосодержащего шлама, включающий смешивание и переработку отходов производств: гипсосодержащего шлама, гидролизной серной кислоты, отработанного солянокислого раствора травления металла и доломитовой пыли уноса, которую производят в три стадии: на первой стадии смешивают гипсосодержащий шлам с гидролизной серной кислотой до рН, равного 7…8 при температуре 70…80°С, на второй стадии смешивают солянокислый раствор травления металла и доломитовую пыль уноса до рН, равного 7…8 при температуре 70…80°С, осуществляют тщательное перемешивание полученных суспензий, передают смесь суспензий на третью стадию в сушилку «кипящего слоя», в которой при температуре 150-320°С смесь сушат и одновременно измельчают до размера частиц 10…15 мкм и получают гипсовое вяжущее с примесью бишофита и железооксидных пигментов коричневого, черного или красного цветов в соответствии с температурой сушки, причем количественное соотношение отходов для переработки составляет, мас.%: гипсосодержащий шлам 45-50, гидролизная серная кислота 30-35, отработанный солянокислый раствор травления металла 12-14, доломитовая пыль уноса 6-8. Технический результат: повышение прочности и водостойкости гипсового вяжущего. 2 табл., 1 ил., 3 пр.

Изобретение относится к способам производства бетонной смеси и жаростойких бетонных изделий, пригодных для изготовления футеровки промышленных тепловых и огнеупорных агрегатов, в частности для футеровки вагонеток обжига кирпича и других агрегатов. Технической задачей предлагаемого изобретения является улучшение экологии окружающей среды за счет применения для изготовления бетонной смеси отходов производства, перерабатываемых с невысокими энергозатратами, и получение жаростойких бетонных изделий с высокой прочностью (не менее 85…90 МПа). Технический результат предлагаемого способа достигается тем, что в способе изготовления жаростойкой бетонной смеси, включающем смешение шамотного заполнителя и самораспадающегося феррохромового шлака, согласно изобретению в качестве шамотного заполнителя применяют шамотную пыль-унос в количестве - 11,1…12,2%, самораспадающийся феррохромовый шлак в количестве - 13,8…15,4%, кроме того, добавляют: отработанный раствор травления сплавов алюминия - 40,0…42,0% и отвальный никелевый шлак в количестве 30,4…35,1%, смешивание осуществляют в реакторе при рН 7,7…8,5 и Т=150…155°С, затем смесь измельчают до размера частиц 4…7 мм в дезинтеграторе. Кроме того, технический результат достигают за счет того, что в способе изготовления изделий из жаростойкой бетонной смеси, содержащей самораспадающийся феррохромовый шлак и шамотный заполнитель, включающем ее твердение, согласно изобретению изготовление указанной бетонной смеси осуществляют по указанному выше составу, уплотняют ее на вибростенде, а твердение осуществляют при тепловой обработке в камере горячим воздухом при температуре 150…155°С в течение 6 часов и получают изделие с прочностью, равной и менее 85…90 МПа. Предлагаемый способ позволяет эффективно использовать отходы производства, которые не находят широкого промышленного применения, улучшать экологию окружающей среды, получать прочные жаростойкие бетонные изделия. 2 н.п. ф-лы, 1 ил., 2 табл.

Изобретение может быть использовано при водоочистке. Способ получения железосодержащего коагулянта включает окисление железа (II) в железо (III) путем окисления отработанных травильных растворов. В реактор, оборудованный мешалкой и распылителем воздуха, подают отработанный сернокислый раствор травления металла, серную кислоту и отход хлорида кальция. Полученную суспензию окисляют воздухом, который подают в количестве 1,5-2,0 г/(л⋅ч) при температуре 20-30°C до рН 3,0-3,5. Затем смесь нейтрализуют отходным хлоридом кальция при температуре 70-75°С до рН 7,0-7,5. При этом образуется хлорид железа (III) и сульфат кальция. Полученную суспензию направляют на фильтр-пресс, где отделяют осадок и охлаждают его до температуры 40-50°С. Получают гипс, который подают в сушилку «кипящего слоя», где его подвергают сушке при температуре 150-180°C и одновременно измельчению до 4-6 мм. Отделенный фильтрат подвергают вакуумной кристаллизации при температуре 80-90°C. Полученные кристаллы отделяют на центрифуге, подают в сушилку «кипящего слоя» и сушат при температуре 100-110°C, одновременно измельчая до 10-15 мкм. Получают активный железосодержащий коагулянт - кристаллический хлорид железа (III). Фильтрат возвращают в реактор. Изобретение позволяет получить коагулянт, не содержащий примеси, из железо- и кальцийсодержащих отходов производств, улучшить экологию. 1 ил., 1 табл., 2 пр.

Изобретение относится к промышленности, производящей расширяющиеся цементы, применяемые, например, для крепления анкеров в горных выработках, в строительстве подземных сооружений, при гидроизоляции и в других целях. Технический результат настоящего изобретения - снижение себестоимости процесса, улучшение экологии окружающей среды и повышение прочности отвержденной смеси. Способ получения расширяющейся цементной смеси путем совместного помола ее составляющих, характеризующийся тем, что в качестве составляющих используют отходы производств - шлак безуглеродного феррохрома, гипсосодержащий шлам производства пигментов и отработанный электролит, осуществляют в две стадии - на первой стадии шлак безуглеродного феррохрома и гипсосодержащий шлам обрабатывают в бисерной мельнице отработанным электролитом при температуре t=80…90°C до рН=7…8 и одновременно в ней измельчают до размера частиц 30…40 мкм, после окончания выделения пара суспензию подают в промежуточную емкость, а из нее насосом - на вторую стадию - в комбинированную сушилку «кипящего слоя», где суспензию сушат при температуре t=130…140° C и рН=9…10 в течение 30…40 мин, одновременно при этом измельчают до размера частиц 3…5 мкм, затем полученную расширяющуюся цементную смесь складируют в бункер. 1 ил., 2 табл.

Изобретение относится к технологии очистки отходящих газов в химической, металлургической, строительной отраслях промышленности. Способ включает очистку газов от хлора суспензией и дальнейшую переработку отработанной суспензии в товарный продукт. При очистке пиролизных и дымовых газов от хлора и хлористого водорода их предварительно охлаждают до 130-140°С в газосборнике распылением нагретой до 90-95°С доломитовой суспензией. Затем ведут ее циркуляцию в скруббере с распылением доломитовой суспензии при температуре 120-130°С до содержания в ней хлоридов магния 42-44 вес. %. При последующем выведении суспензии из оборота ее подвергают вакуум-выпарке при температуре 120-130°С, отделяют центрифугой кристаллогидраты хлорида магния. Одновременно сушат при температуре 100-110°С и измельчают до 10-15 мкм в комбинированной сушилке «кипящего слоя», получая товарный продукт бишофит. Отделенный центрифугой фильтрат одновременно сушат в комбинированной сушилке «кипящего слоя» при температуре 110-120°С до содержания в нем хлорида кальция 55-56 вес. % и измельчают до размера частиц 10-15 мкм, получая товарный продукт кристаллогидрат хлорида кальция. Изобретение обеспечивает повышение качества товаров, снижение отходов производства, что способствует улучшению экологической обстановки окружающей среды. 1 з.п. ф-лы, 3 табл.

Изобретение относится к способам очистки отходящих газов (пиролизного газа, дымовых газов от сжигания его или других углеводородов) от оксидов серы в теплоэнергетике, в металлургии и в других отраслях народного хозяйства с аналогичным составом отходящих газов. Способ очистки отходящих газов от оксидов серы включает непрерывное контактирование их в абсорбционном скруббере с циркулирующим водным абсорбентом, который с продуктами абсорбции выводят для нейтрализации. В качестве водного абсорбента используют 20…25% водный раствор доломитовой пыли в виде суспензии. Суспензию подают распылением в газосборник. Далее газы охлаждаются с t=700…800°С до t=110…120°С и далее за счет многократного воздействия распыляемой суспензии газы в скруббере охлаждаются до температуры 80…90°С. Оксиды магния и кальция доломитовой суспензии взаимодействуют с оксидами серы, образуя сульфаты кальция и магния. После чего полностью очищенный от серы газ отсасывают из верхней части скруббера и подают в газгольдер. При достижении в суспензии содержания сульфата магния 42…45%, ее выводят из оборота и вводят резервную емкость с такой же суспензией. Суспензию, выведенную из оборота, подают на трехстадийную обработку для получения товарных продуктов. Изобретение обеспечивает снижение себестоимости процесса очистки отходящих газов от оксидов серы за счет связывания их оксидами магния и кальция доломитовой пыли, а также получение товарных продуктов в процессе очистки (гипса, горькой соли и их смеси). 1 ил., 4 табл.

Изобретение относится к области химической технологии. Способ получения кристаллогидратов хлоридов магния и кальция из отходов производств, включает нейтрализацию раствора соляной кислоты карбонатами. В качестве соляной кислоты используют отработанные солянокислые растворы травления металлов. В качестве карбонатов применяют отходы производства доломита – доломитовую пыль. Реакцию проводят при температуре 90-95°С. Причем после окончания реакции нейтрализации от полученной суспензии в горячем виде на фильтре отделяют гидроксид железа, который перерабатывают в желтый и красный железооксидные пигменты. Полученный фильтрат выпаривают при 130-140°С до содержания в нем 46 мас.% хлорида магния, после чего проводят его кристаллизацию при 40-50ºС. Выпавшие кристаллы отделяют центрифугой, их одновременно сушат и измельчают в комбинированной сушилке при 120-130°С и получают кристаллогидрат хлорида магния. Отделенный центрифугой фильтрат, содержащий хлорид кальция, подвергают кристаллизации распылением при 300±0,5°С в распылительной сушилке, при этом получают кристаллогидрат хлорида кальция. Обеспечивается эффективный способ получения кристаллогидратов магния и кальция из отходов производств при низких энергозатратах. 1 ил., 3 табл., 2 пр.

Изобретение относится к области гидрометаллургии тяжелых цветных металлов и может быть использовано при комплексной переработке шламов нейтрализации кислых шахтных вод и переработки шламов сточных вод гальванических и аналогичных производств. Шламы кислых шахтных вод одновременно измельчают до размера частиц 12-18 мкм в бисерной мельнице и выщелачивают 40% серной кислотой до рН 3-3,5 при температуре 70-80°C в течение 2,5-3 ч. Суспензию охлаждают до температуры 40-50°C, отделяют гипс. Полученный фильтрат смешивают с отработанным раствором травления алюминиевых сплавов до достижения необходимого уровня рН в три стадии. На каждой стадии выделяют из полученной смеси осадки в виде гидроксидов - меди, цинка и железа. На 1-й стадии нейтрализацию проводят до рН 5,0-6,0, на 2-й -до рН 6,2-7,2, на 3-й - до рН 7,2-8,0. На каждой стадии после отстаивания полученную смесь охлаждают до температуры 40-50°С, выделенные осадки одновременно сушат и измельчают до величины частиц 15-20 мкм в комбинированных сушилках «кипящего слоя» с получением пигментов. Фильтраты 1-й и 2-й стадий передают на последующую стадию, а после 3-й стадии смешивают с известкой пылью до рН 8,0-9,7, отделяют осадок в виде гипса, который используют в строительстве, а оставшийся фильтрат возвращают в процесс. Способ позволяет безотходно переработать шламы с получением товарных продуктов. 1 з.п. ф-лы, 1 ил., 2 табл., 2 пр.

Изобретение относится к обезвреживанию отходов гальванических производств, содержащих тяжелые металлы, отхода горнодобывающих предприятий доломитовой пыли. Способ включает обработку раствора отходом производства до достижения установленных значений рН для каждого металла в полученной смеси, добавление очередной порции отхода, отстаивание полученной смеси 15-20 мин при 90-95°С, отделение осадков фильтрованием и использование фильтрата в качестве затворяющей жидкости для производства бетонов, при этом обработку раствора ведут отходом производства доломита в виде доломитовой пыли, которую добавляют в три стадии до рН=5,5-6,0 на первой стадии, рН=6,2-7,5 на второй стадии и рН=7,7-9,7 на третьей стадии, причем на каждой стадии после отстаивания полученную смесь охлаждают до 40-50°С, полученные осадки одновременно сушат и измельчают до величины частиц 15-20 мкм в сушилках «кипящего слоя», выделенные фильтраты передают на последующую стадию, при этом на первой стадии получают осадок в виде гидроксида меди, который сушат в восстановительной атмосфере при температуре 120-130°С и получают оксид меди, на второй стадии получают гидроксид никеля, который сушат и получают оксид никеля, на третьей - гидроксид железа, который после выделения дополнительно обрабатывают 0,6-0,8% отработанным раствором травления силумина, а сушат при температуре 90-100°С или 230-240°С, при этом получают железо-оксидный пигмент желтого или красного цвета. Способ позволяет эффективно осуществлять практически безотходную переработку отработанных кислых растворов гальванических производств и отхода производства доломита. 4 пр., 1 ил.

Изобретение относится к получению жидкого стекла. Способ получения жидкого стекла включает составление смеси, состоящей из 80 мас. % отхода производства ферросиликохрома, представляющего собой микрокремнезем с размером частиц (10-100)⋅10-6 м, содержащий, мас. %: SiO2 - 83-93, Al2O3 - 0,8-1,5, СаО - 1,0, MgO - 0,3, Cr2O3 - 0,2-0,5, Fe2O3 - 0,5-4,9, и 20 мас. % добавки, выбранной из дисперсной пыли, получаемой при сжигании Экибастузского угля, содержащей, мас. %: SiO2 – 64,7, Al2O3 - 27,7, СаО - 4,7, MgO - 0,3, Cr2O3 - 1,7, или шлама обогащения каолина, содержащего, мас. %: SiO2 - 66.7; Al2O3 - 21,9, K2O - 2,4. Далее готовят в реакторе водную суспензию приготовленной смеси, подают в реактор гидроксид натрия в гранулированном виде и проводят гидротермальную обработку суспензии при температуре 70°С и перемешивании со скоростью 1 об/с. Изобретение обеспечивает повышение прочности и водостойкости изделий, изготавливаемых из полученного жидкого стекла. 1 ил., 2 пр.

Изобретение относится к алюмосиликатной клеевой промышленности. Для получения клея-связки приводят в контакт раствор натриевой щелочи с кремнийсодержащими отходами производства при 150-160°C в течение 1,5-2 ч, производят механохимическую обработку и отделение осадка от клея-связки. Полученную суспензию разделяют на фильтре на фильтрат и осадок. Фильтрат сушат в распылительной сушилке при 120°C в течение 2 ч с получением алюмосиликатного клея-связки. В качестве кремнийсодержащих отходов применяют отходы производства ферросплавов – микрокремнезем ферросиликохрома, алюминийсодержащих отходов – отработанные растворы травления дюралюминия или силумина в следующем мольном соотношении компонентов: SiO2 : (0,8-0,9) Na2O : ( 0,16-0,2) Al2O3. После окончания основной реакции добавляют отработанные растворы травления сплавов цинка в количестве 4,5 – 4,8 мас.%. Обеспечивается сокращение продолжительности технологического цикла, расхода воды и щелочи и повышение прочностных характеристик клея-связки. 1 з.п. ф-лы, 1 ил., 2 табл., 4 пр.

Изобретение может быть использовано в химической промышленности. Для получения сульфата магния и железооксидных пигментов из отходов производств осуществляют взаимодействие тонкодисперсного магнийсодержащего сырья с сернокислым отработанным травильным раствором, содержащим сульфат железа. В качестве магнийсодержащего сырья используют доломитовую пыль, образующуюся при прокаливании доломита при температуре 600-750°С. Соотношение сульфат-ионы : доломитовая пыль в травильном растворе составляет 1:1,1. Проводят гидротермальную обработку полученной суспензии, продувая раствор воздухом, кислород которого окисляет железо Fe+2 в Fe+3. Осадок отделяют на фильтр-прессе и отмывают от водорастворимых соединений. Проводят термообработку осадка в железооксидный пигмент. Сушку и измельчение железооксидного пигмента осуществляют одновременно в комбинированной распылительной сушилке. Отделенный на фильтр-прессе фильтрат и промывную воду, содержащие сульфат магния, подают в реактор. Повышают в растворе содержание сульфат-ионов до 35-40% добавкой концентрированной серной кислоты и проводят нейтрализацию доломитовой пылью при температуре 80-100°С до pН, равного 7,0-7,5. Кристаллизацию сульфата магния проводят в кристаллизаторе. Изобретение позволяет повысить выход сульфата магния и железооксидных пигментов, снизить энергозатраты при переработке сернокислого отработанного травильного раствора. 1 з.п. ф-лы, 1 ил., 2 табл., 3 пр.

Изобретение относится к переработке пылеотходов, полученных при прокаливании отходов бронзы, содержащих тяжелые цветные металлы. Способ заключается в растворении в 20-25% растворе серной кислоты пыли, уловленной при прокаливании отходов бронзы. В полученный сернокислый раствор добавляют гартцинк, осаждают и отделяют от суспензии пасту, содержащую оксиды меди и свинца. Отфильтрованный раствор сульфата цинка обрабатывают отходами кальцийсодержащих соединений в два этапа. На первом этапе к раствору добавляют хлорид кальция для перевода сульфата цинка в хлорид и отделяют от суспензии образовавшийся гипс. На втором этапе раствор нейтрализуют пылью-уносом, получаемой при прокаливании известняка, отделяют и промывают на поверхности вакуум-фильтра пасту оксида цинка химочищенной водой от хлорида кальция, после чего сушат и измельчают полученные цинковые белила в комбинированной распылительной сушилке при температуре 110-120°C. Техническим результатом является снижение энергетических и сырьевых затрат в процессе переработки пылеотходов с получением целевого продукта - цинковых белил. 2 з.п. ф-лы, 1 ил., 2 табл.

 


Наверх