Патенты автора Перфильева Ксения Григорьевна (RU)

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей движения твердых или жидких частиц в двухфазном потоке. Способ включает измерение аэродинамической силы, действующей на обдуваемую равномерным газовым потоком полую сферу с пористой оболочкой, при подаче во внутреннюю полость сферы сжатого газа под давлением. Твердую полую сферу с пористой оболочкой закрепляют на длинном плече рычага с возможностью его вращения вокруг горизонтальной оси, расположенной на неподвижной точке опоры. На коротком плече рычага закрепляют стержень, контактирующий с приемной площадкой датчика силы. Предварительно уравновешивают моменты силы тяжести, приложенные к плечам рычага путем размещения дополнительного груза на коротком плече рычага. Сжатый газ под давлением подают во внутреннюю полость сферы через тонкостенную трубку. Равномерный обдувающий поток газа подают на сферу снизу вверх. Для каждого значения скорости обдувающего потока газа измеряют силу, действующую на приемную площадку датчика силы в отсутствие вдува газа с поверхности сферы, и при вдуве газа с заданным значением плотности потока газа, объемный расход подаваемого в полость сферы газа и скорость обдувающего газового потока. Зависимость коэффициента аэродинамического сопротивления от числа Рейнольдса обдувающего потока и плотность потока газа, вдуваемого через пористую оболочку, определяют из заданных алгебраических соотношений. Технический результат заключается в определении коэффициента аэродинамического сопротивления твердой сферы при вдуве газа с ее поверхности с высокой точностью в более широком диапазоне чисел Рейнольдса обдувающего потока. 3 ил., 3 табл.

Изобретение относится к области разработки способов для лабораторных исследований физических процессов, в частности для исследования закономерностей испарения группы капель жидкости при нагреве внешним тепловым потоком. Способ определения скорости испарения группы капель включает измерение изменения размера капель при их прохождении через вертикально расположенный полый цилиндрический нагреватель, группу монодисперсных капель получают путем многократной импульсной подачи жидкости из мерной емкости в полый цилиндрический нагреватель через набор равномерно расположенных капилляров одинакового диаметра с возможностью сбора прошедших через нагреватель капель в приемную емкость, размер капель на входе в нагреватель измеряют с помощью видеосъемки, суммарные массы капель, поступивших в нагреватель и в приемную емкость за время проведения измерений, определяют взвешиванием жидкости в мерной и приемной емкостях, а скорость испарения группы капель определяют из соотношения: где W - скорость испарения группы капель, кг/(м2⋅с); - плотность жидкости, кг/м3; R0 - радиус капель на входе в нагреватель, м; g - ускорение свободного падения, м/с2; L - длина цилиндрического нагревателя, м; mк - суммарная масса жидкости, поступившая в приемную емкость за время проведения измерений, кг; m0 - суммарная масса жидкости, поступившая в нагреватель за время проведения измерений, кг. Техническим результатом изобретения является повышение точности определения скорости испарения группы капель. 4 ил.
Изобретение относится к установке для исследования физических процессов, в частности для исследования динамики разрушения сферического макрообъема жидкости при свободном падении в воздухе. Установка включает тонкостенную эластичную оболочку, наполненную жидкостью, устройство для прокалывания стенки оболочки и систему визуализации процесса разрушения. Устройство для прокалывания стенки оболочки выполнено в виде кольца, по окружности которого равномерно установлено не менее двух заостренных игл, направленных радиально в сторону оси симметрии кольца. Заостренные концы игл расположены на окружности в плоскости, перпендикулярной оси симметрии кольца. Для подачи к кольцу в режиме свободного падения предварительно наполненной жидкостью загерметизированной сферической оболочки в верхней части кольца коаксиально с ним установлена цилиндрическая направляющая втулка, внутренняя стенка которой покрыта антифрикционной смазкой. Высота направляющей втулки, ее внутренний диаметр и диаметр окружности, на которой расположены заостренные концы игл, начальная скорость движения макрообъема жидкости определяются заданными алгебраическими соотношениями. Технический результат заключается в повышении достоверности экспериментальных данных по разрушению массивов жидкости при свободном падении в воздухе. 5 ил.

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей движения облака твердых частиц в вязкой жидкости. Способ исследования осаждения сферического облака полидисперсных твердых частиц в вязкой жидкости включает перемешивание частиц путем воздействия ультразвуковых колебаний в погруженном в жидкость сферическом контейнере, выполненном в виде двух вложенных друг в друга полусферических оболочек с возможностью его открытия при вращении одной из оболочек вокруг оси симметрии, введение частиц в кювету с вязкой жидкостью, выполненную из прозрачного материала, и визуализацию процесса осаждения частиц, отличается тем, что сферический контейнер, выполненный из сплошных оболочек, предварительно заполняют водой, перемешивают полидисперсные частицы с водой, причем в процессе перемешивания постепенно вытесняют воду из контейнера вязкой жидкостью с коэффициентом динамической вязкости, соответствующим вязкости жидкости в кювете, при этом время вытеснения воды вязкой жидкостью и время открытия контейнера выбирают в соответствии с соотношениямиτ1≥(3÷5) минут, а начальную концентрацию частиц в облаке определяют по формуле где τ1 - время вытеснения воды из контейнера с вязкой жидкостью, с; τ2 - время открытия контейнера, с; Dk - диаметр контейнера, м; μl - коэффициент динамической вязкости жидкости, Па⋅с; ρр - плотность материала частиц, кг/м3. Техническим результатом изобретения является повышение точности определения основных характеристик и динамики осаждения совокупности полидисперсных частиц. 3 ил., 1 табл.

Использование: для определения коэффициента сопротивления сферической частицы при вдуве газа с ее поверхности. Сущность изобретения заключается в том, что осуществляют измерение силы сопротивления частицы при воздействии на нее газового потока, при этом полую сферическую частицу с пористой оболочкой, размещенную в равномерном потоке газа, подвешивают на консоли, выполненной в виде тонкой трубки с возможностью ее вращения вокруг горизонтальной оси, расположенной перпендикулярно направлению потока обдувающего газа, во внутреннюю полость частицы подают под давлением сжатый газ, измеряют угол поворота консоли от первоначально вертикального направления, объемный расход подаваемого в полость частицы газа и скорость обдувающего потока газа, а зависимость коэффициента сопротивления от объемного расхода газа, вдуваемого с поверхности частицы, определяют исходя из заданного соотношения. Технический результат: обеспечение возможности определения коэффициента сопротивления сферической частицы при вдуве газа с ее поверхности по измеренным в эксперименте параметрам. 2 ил., 2 табл.

Изобретение относится к области разработки способов и устройств для лабораторных исследований физических процессов, в частности для исследования закономерностей движения твердых частиц в жидкости. Способ включает введение частиц в кювету с вязкой жидкостью, выполненную в виде правильной призмы с прозрачными стенками, и измерение скорости их гравитационного осаждения в жидкости. В кювету вводят с нулевой начальной скоростью одновременно две частицы одинакового диаметра, выполненные из одного материала. Одну из частиц непосредственно перед введением в жидкость нагревают или охлаждают до температуры, отличающейся от температуры другой эталонной частицы, равной температуре жидкости, не менее чем на ±20 К. Скорость осаждения каждой из частиц измеряют времяпролетным методом с помощью видеосъемки процесса осаждения через прозрачные стенки кюветы. Время предварительного нагрева или охлаждения одной из частиц, расстояние, на котором измеряют скорость осаждения частиц в жидкости и коэффициент сопротивления нагретой или охлажденной частицы, определяются по заданным алгебраическим соотношениям. Технический результат – повышение достоверности получаемых результатов. 3 ил., 5 табл.

Изобретение относится к средствам распыливания жидкостей и растворов и может быть использовано в двигателестроении, химической и лакокрасочной промышленности. Способ получения потока капель с регулируемым дисперсным составом включает распыливание жидкости в газообразной среде центробежной форсункой, содержащей камеру закручивания, входные тангенциальные каналы и выходное сопло. В процессе распыливания жидкости изменяют суммарную площадь входных тангенциальных каналов путем дискретного перекрытия части каналов, а максимальный диаметр капель Dmax, дифференциальную g(D) и интегральную G(D) функции массового распределения капель по размерам в потоке определяют в соответствии с соотношениями где δ - толщина пленки жидкости в выходном сечении сопла, м;Oh - число Онезорге;Re - число Рейнольдса;D - диаметр капель жидкости, м.Значения толщины пленки жидкости, чисел Re и Oh определяют расчетом по формулам теории центробежной форсунки Г.Н. Абрамовича для заданных значений расхода жидкости и геометрической характеристики форсунки. Техническим результатом изобретения является обеспечение возможности регулирования дисперсности капель жидкости в факеле распыла форсунки в процессе ее работы. 4 ил., 1 табл., 1 пр.

Изобретение относится к области измерений в теплофизике, в частности к способам определения интегрального коэффициента излучения поверхности твердых материалов, и может быть использовано при измерении интегрального коэффициента излучения теплозащитных материалов. Способ включает измерение температуры предварительно нагретого цилиндрического образца твердого материала, торцевые поверхности которого покрыты фольгой с высоким коэффициентом отражения, в процессе его остывания в вакууме. Образец предварительно вводят в нагреватель, выполненный в виде соосного с образцом полого цилиндра с электроспиралью накаливания на его внешней поверхности и размещенный в верхней части вакуумированной камеры с зачерненными стенками. После нагрева образца его выводят из нагревателя и измеряют температуру образца в процессе его остывания двумя термопарами, размещенными на оси симметрии образца и на его боковой поверхности. Нагрев образца проводят до температуры его боковой поверхности не менее 500 К. Интегральный коэффициент излучения определяется из решения обратной задачи теплопроводности. Технический результат - повышение точности определения интегрального коэффициента излучения и снижение времени измерения за счет нагрева образца непосредственно в вакуумированной камере, и повышение информативности измерений путем размещения дополнительной термопары. 4 ил., 1 табл.

Изобретение относится к области разработки установок для лабораторных исследований физических процессов, в частности для исследования закономерностей всплытия компактного пузырькового кластера в жидкости. Установка включает прозрачную призматическую кювету с жидкостью, устройство для формирования пузырькового кластера и систему визуализации процесса всплытия. Устройство для формирования пузырькового кластера, расположенное в нижней части кюветы, выполнено в виде коллектора, соединенного через запорный вентиль и редуктор с источником сжатого газа. На верхней крышке коллектора установлена плотно прилегающая пластина с возможностью поступательно-возвратного смещения ее вдоль верхней крышки коллектора электромагнитным приводом. В верхней крышке коллектора и в пластине выполнены расположенные в виде равномерной прямоугольной сетки совмещенные перфорации одинакового диаметра. Давление газа в коллекторе, расстояния между центрами соседних перфораций, величина смещения пластины, промежуток времени совмещения перфораций в верхней крышке коллектора и в пластине определяются по заданным алгебраическим соотношениям. Технический результат - возможность определения скорости и конфигурации кластера, состоящего из монодисперсных пузырьков с заданным контролируемым диаметром, в процессе его всплытия в жидкости. 3 табл., 3 ил.

Изобретение относится к снарядам, движущимся в водной среде. Снаряд содержит корпус, в котором размещен реактивный двигатель с центральным соплом, баллистический наконечник, выполненный в виде усеченного конуса, и кольцевое сопло для вдува газа в водную среду. В качестве реактивного двигателя используется ракетный двигатель твердого топлива, заряд твердого топлива имеет сквозной осевой канал звездообразного сечения. В дозвуковой части центрального сопла расположен воспламенитель, выполненный с возможностью задержки зажигания твердого топлива. В головной части корпуса выполнено цилиндрическое углубление, в котором с зазором, сопряженным с внутренней образующей цилиндрического углубления, установлен баллистический наконечник. По оси баллистического наконечника выполнен сквозной канал, сообщающийся с каналом заряда твердого топлива и имеющий сужение в головной части баллистического наконечника. Кольцевой зазор между баллистическим наконечником и цилиндрическим углублением соединен не менее, чем тремя симметрично расположенными радиальными каналами со сквозным каналом баллистического наконечника и образует кольцевое сопло, выполненное с возможностью вдува в водную среду продуктов сгорания заряда твердого топлива под углом к продольной оси снаряда в направлении его кормовой части. В сужении сквозного канала баллистического наконечника плотно установлена цилиндрическая пробка с возможностью ее вылета под действием давления продуктов сгорания заряда твердого топлива. Давление продуктов сгорания в осевом канале твердого топлива, площадь критического сечения центрального реактивного сопла, площади поперечного сечения сужения сквозного канала баллистического наконечника и кольцевого зазора, суммарная площадь поперечного сечения радиальных каналов, время задержки зажигания заряда твердого топлива и угол вдува продуктов сгорания через кольцевое сопло определяются по заданным алгебраическим формулам. Технический результат заключается в увеличении дальности стрельбы снаряда в водной среде. 2 з.п. ф-лы, 3 табл., 5 ил.

Изобретение относится к аэрационным устройствам, предназначенным для введения газа в жидкую среду, в частности к устройствам для получения компактного кластера пузырьков одинакового размера. Устройство включает размещенный в нижней части резервуара с жидкостью коллектор в виде цилиндрической емкости с газопроницаемой верхней крышкой, соединенный патрубком с источником сжатого газа. В верхней крышке коллектора в ее центре и по равноотстоящим концентрическим окружностям выполнены перфорации, в которых установлены трубки одинакового диаметра, высота которых одинакова для трубок, расположенных по каждой из окружностей, и линейно уменьшается с увеличением радиуса окружности. В качестве источника газа используется баллон со сжатым газом, соединенный через редуктор низкого давления, а также через редуктор высокого давления и электропневмоклапан с патрубком коллектора. Высота трубок, величина низкого и высокого давления, длительность импульса открытия электропневмоклапана определяются по заданным алгебраическим соотношениям. Изобретение обеспечивает получение компактного пузырькового кластера монодисперсных пузырьков заданного диаметра. 4 табл., 5 ил.

Изобретение относится к технике распыления порошков в воздушной и газовой. Устройство для распыления порошков включает цилиндрический корпус, содержащий порошок, газогенератор с зарядом твердого топлива, систему аэрации порошка и сопло для истечения газопорошковой смеси. Газогенератор, выполненный в виде отдельного блока, содержит сопло и установлен соосно с корпусом, содержащим порошок. Заряд, бронированный по боковой поверхности, выполнен в виде последовательно расположенных чередующихся сплошных и канальных дисков одинакового диаметра из твердого топлива. В канальных дисках выполнено центральное отверстие, а на их торцевой поверхности со стороны, противоположной соплу газогенератора, выполнена система радиально-концентрических канавок. Система аэрации порошка выполнена в виде перфорированной по боковой поверхности трубки, установленной по оси корпуса с порошком в пределах его длины. Один торец трубки заглушен, а второй соединен газоводом с соплом газогенератора. Перфорации на боковой поверхности трубки выполнены тангенциально в виде чередующихся поясов с возможностью создания закрученного в противоположных направлениях потока продуктов сгорания газогенератора. Диаметр центрального отверстия канальных дисков, площадь поперечного сечения канавок, суммарный объем канавок, толщина сплошных и канальных дисков, площадь критического сечения сопла газогенератора, суммарная площадь перфораций на боковой поверхности трубки и площадь критического сечения сопла для истечения газопорошковой смеси определяются заданными соотношениями. Обеспечивается повышение эффективности и надежности распыливания порошка путем создания импульсного газоприхода продуктов сгорания газогенератора и интенсификации процесса аэрации порошка. 4 ил., 2 табл.

Изобретение относится к области ракетной техники, в частности к ракетным двигателям активно-реактивных снарядов, запускаемых из ствола артиллерийского орудия, и заключается в способе повышения дальности полета активно-реактивного снаряда. На траектории полета снаряда зажигают заряд твердого топлива продуктами сгорания воспламенителя, расположенного в предсопловом объеме и инициируемого продуктами сгорания замедлителя. Зажигание зарядов замедлителя осуществляют продуктами сгорания пиропатронов, срабатывающих при вылете снаряда из ствола орудия и размещенных в замкнутой полости, образуемой перфорированной диафрагмой, разделяющей предсопловой объем и диффузор сопла, и срезаемой крышкой сопла, расположенной в его выходном сечении. Заряды замедлителя выполнены в форме усеченных конусов, основания которых направлены в сторону выходного сечения сопла, и герметично размещены через термоизолирующие прокладки в перфорациях диафрагмы. Высоту зарядов замедлителя определяют по алгебраической формуле, включающей оптимальное значение времени задержки зажигания заряда твердого топлива, которое предварительно определяют из серии внешнебаллистических расчетов дальности полета конкретного активно-реактивного снаряда. Изобретение позволяет обеспечить увеличение дальности полета активно-реактивного снаряда и надежное зажигание его заряда твердого топлива. 1 з.п. ф-лы, 5 ил., 3 табл.

Изобретение относится к исследованию деформации капель аэродинамическими силами и может быть использовано в лабораторных установках для исследования физических и химических процессов. Стенд для исследования деформации капель аэродинамическими силами включает вертикально расположенную капельницу с капилляром, систему подачи обдувающего падающую каплю встречного потока воздуха и систему визуализации. Система подачи потока воздуха содержит батарею баллонов со сжатым воздухом, соединенную трубопроводом через редуктор, регулирующий вентиль и расходомер, с входом цилиндрического патрубка, установленного соосно с капельницей. В патрубке расположен формирователь потока, выполненный в виде не менее шести симметрично расположенных по радиусам патрубка пластин. Система визуализации включает видеокамеру, расположенную с возможностью регистрации исходной сферической капли на срезе капельницы, и две скоростные видеокамеры, расположенные с возможностью регистрации скорости и деформации падающей капли в перпендикулярных плоскостях в выходном сечении патрубка. Диаметр капилляра, диаметр исходной сферической капли, диаметр и длина патрубка, скорость потока воздуха и число Вебера определяются по заданным алгебраическим формулам. Техническим результатом изобретения является повышение эффективности устройства и информативности исследования. 4 ил., 4 табл.

Изобретение относится к артиллерийской технике, в частности к ракетным двигателям снарядов, запускаемых из ствола орудия или миномета. Ракетный двигатель активно-реактивного снаряда содержит камеру сгорания с зарядом твердого топлива, сопло, инициатор и сопловую заглушку. В критическом сечении сопла установлена прорывная мембрана. Заглушка состоит из основания, крышки и закрепленного на основании полого цилиндрического стакана с перфорированным дном со стороны мембраны, установленной в критическом сечении сопла. В основании заглушки и дне стакана выполнены соосные отверстия, в которых установлен шток с возможностью его продольного перемещения. Шток имеет заостренный наконечник со стороны мембраны, коническое утолщение со стороны основания заглушки, сопряженное с конической выемкой в основании, и срезаемый фланец, зажатый между основанием и крышкой заглушки. На штоке внутри стакана закреплена консоль, а между дном стакана и консолью установлена цилиндрическая пружина, охватывающая шток. Пиротехнический инициатор состоит из навески основного воспламенителя, размещенной между дном стакана и мембраной, и не менее двух каплюлей-воспламенителей, установленных на основании заглушки и сопряженных с ударниками, закрепленными на консоли. Крышка сопловой заглушки расположена в выходном сечении сопла и закреплена при помощи завальцовки с его внешней стороны, а в центральной части крышки выполнено отверстие, диаметр которого равен диаметру конического утолщения штока. Величина свободного объема камеры сгорания определяется алгебраическим выражением, защищаемым настоящим изобретением. Изобретение позволяет обеспечить надежное автономное воспламенение заряда твердого топлива, не зависящее от воздействия пороховых газов метательного заряда и сброса давления при вылете сопловой заглушки. 4 ил., 1 табл.

 


Наверх