Патенты автора Багаутдинов Марсель Азатович (RU)

Изобретение относится к нефтяной промышленности и может быть использовано для удаления из полости электроцентробежных насосов различных видов осадков, например неорганических солей, твердых взвешенных частиц песка, асфальтосмолистых и др. веществ. Клапан обратный электроцентробежного насоса для очистки погружного оборудования от осадков содержит корпус с верхней и нижней присоединительными резьбами, сферический клапан, перекрывающий посадочное седло, шлицевый вал погружного электронасоса насоса, выходящий в полость ловильной головки насоса. Между шлицевым валом электроцентробежного насоса и обратным клапаном размещена крыльчатка, содержащая корпус со ступенчатой внутренней полостью и наклонные к вертикали лопасти. Верхний торец корпуса соединен со штоком, входящим в проходное отверстие седла обратного клапана насоса. Внутрь корпуса с помощью резьбового соединения входит ступенчатый приводной шток. Нижняя часть штока под нижним торцом крыльчатки соединена со шлицевой втулкой, насаженной неподвижно на шлицевый вал насоса. Для осуществления способа очистки погружного оборудования от осадков останавливают насос для проведения ремонта. Производят закачку с устья скважины в колонну насосно-компрессорных труб химического реагента в расчетном объеме. Включают электроцентробежный насос в обратном направлении для посадки шарика клапана в седло и выдерживают время для растворения осадка в оборудовании. Производят запуск насоса в постоянный режим работы с обычным направлением вращения его вала. Достигается технический результат - повышение надежности открытия обратного клапана и удаления осадков из полости погружного оборудования скважины с применением химических реагентов. 2 н.п. ф-лы, 2 ил.

Изобретение относится к нефтяной промышленности и может быть использовано для удаления из полости электроцентробежных насосов различных видов осадков, а также парафиновых отложений со стенок верхней части колонны насосно-компрессорных труб. Способ включает остановку скважины, подачу тока на электродвигатель клапана с выдвижным штоком запорного органа, промывку полости электропогружного насоса жидкостью из колонны насосно-компрессорных труб под давлением, подачу на электродвигатель клапана тока обратной полярности и закрытие клапана с последующим запуском насоса в работу. Подачу тока на электродвигатель клапана для выдвижения штока запорного органа производят при работающем насосе перед его остановкой для очистки, далее останавливают насос и в колонну насосно-компрессорных труб с устья производят закачку расчетных объемов химического растворителя осадка и продавочной жидкости, а затем производят подачу на электродвигатель клапана тока обратной полярности для возврата выдвижного штока в крайнее нижнее положение и посадки клапана в седло, после чего выдерживают расчетное время для растворения. Упрощается технология очистки насоса от осадков, повышается надежность и эффективность очистки. 3 ил.

Изобретение относится к нефтяной промышленности и может быть использовано для определения газового фактора нефти, а также дебитов нефти и воды нефтяных скважин. Технической задачей предлагаемого способа является обеспечение возможности измерения дебитов нефти, воды и газа при различных содержаниях свободного газа в измеряемой продукции, в том числе при его полном отсутствии. Способ включает поступление продукции нефтяной скважины в измерительную емкость с калиброванной частью, разделение ее на газовую и жидкую фазы, измерение дебита жидкости по скорости наполнения калиброванной части емкости и переключение потоков нефти и газа с помощью поршня. При этом поршень герметично размещают в калиброванной части емкости, в котором при достижении им верхнего крайнего положения под действием напора поступающей продукции открывается проходной канал, позволяющий далее поршню двигаться вниз под собственным весом, превышающим сопротивления его движению, и пропуская через себя измеряемую среду. При достижении им крайнего нижнего положения под действием силы тяжести поршня проходной канал перекрывается и поршень начинает движение вверх под напором поступающей снизу в измерительную емкость продукции скважины. При этом общий дебит продукции скважины рассчитывают по времени движения поршня от крайнего нижнего до крайнего верхнего положений и объему, описываемому поршнем за этот период. Количественный состав измеряемой продукции определяют путем отбора ее пробы по высоте калиброванной части измерительной емкости в пробоотборную камеру при достижении крайнего верхнего положения поршня в емкости, последующего ее слива из нижней точки камеры и замера объемов сливаемых нефти и воды, а также их плотности, при этом объем газовой фазы в продукции рассчитывают вычитанием объемов обеих жидкостей из всего внутреннего объема камеры. 3 ил.

Изобретение относится к нефтяной промышленности и может быть использовано для определения газового фактора нефти, а также дебитов нефти и воды нефтяных скважин. Технический результат заключается в упрощении измерений дебитов и повышении их точности. Способ включает поступление продукции нефтяной скважины в сепаратор с калиброванной частью, разделение ее на газовую и жидкую фазы, последовательный отбор газа и жидкости из сепаратора с помощью поплавка и переключателя потоков. Измерение дебита жидкости по скорости наполнения калиброванной части сепаратора, а дебита газа - по скорости ее опорожнения, измерение гидростатического перепада давления в сепараторе при полном заполнении ее калиброванной части для определения количества воды в добываемой продукции. Переключение отбора газа на слив жидкости из сепаратора при достижении уровнем жидкости в нем крайнего верхнего положения производится поплавком за счет архимедовой силы выталкивания его в жидкости, действующей на верхнюю сторону переключателя потоков. Переключение слива жидкости на отбор газа из сепаратора при достижении уровнем жидкости крайнего нижнего положения производится поплавком за счет его силы тяжести в газовой среде, действующей на нижнюю сторону переключателя потоков. Дебиты жидкости и газа рассчитываются по периодам времени между замыканиями электрических контактов, установленных на обеих сторонах переключателя потоков, а периоды времени перемещения переключателя потоков после замыкания контактов до его крайних положений из расчетов исключаются. 2 ил.

Изобретение относится к нефтяной промышленности и может быть использовано для определения газового фактора нефти, а также дебитов нефти и воды нефтяных скважин. Технический результат заключается в обеспечении возможности измерения дебита жидкости при малом содержании свободного нефтяного газа или его отсутствия в измеряемой продукции. Способ измерения продукции нефтяной скважины включает поступление продукции нефтяной скважины в сепаратор с калиброванной частью, разделение ее на газовую и жидкую фазы, последовательный отбор газа и жидкости соответственно из верхней и нижней точек сепаратора, измерение дебита жидкости по скорости наполнения калиброванной части сепаратора, а дебита газа – по скорости ее опорожнения, а также плотности продукции в калиброванной части сепаратора с помощью датчиков гидростатического перепада давления, установленных на разных уровнях калиброванной части сепаратора. В условиях дефицита свободной газовой фазы в продукции скважины циклические опорожнения сепаратора от жидкости после ее заполнений производят с помощью сифонной трубки, восходящую линию которой соединяют с нижней точкой калиброванной части сепаратора, а нисходящую – с напорной линией скважины, и заряжающейся при достижении уровнем жидкости в сепарационной емкости крайней верхней точки трубки сифона, а срывающего свою работу при достижении уровнем жидкости в сепараторе точки ее отбора сифоном. Точку отбора жидкости из емкости сифоном располагают непосредственно под нижним датчиком, а верхнюю точку трубки сифона – непосредственно над верхним датчиком гидростатического давления. Объемный расход жидкости, сливаемый через сифон, поддерживают превышающим объемный расход поступающей жидкости в сепаратор регулированием дросселя на нисходящей линии сифона. 1 ил.

Изобретение относится к нефтяной промышленности и может быть использовано при эксплуатации нефтяной скважины, оборудованной штанговым или электроцентробежным насосами, на многопластовых залежах нефти. Технический результат - обеспечение возможности раздельного учета добычи жидкостей из пластов и регулирования отборов продукции каждого пласта. По способу осуществляют отбор продукции нижнего пласта через приемный патрубок, проходящий через пакер, разделяющий продуктивные пласты. Отбор продукции верхнего пласта осуществляют через боковое отверстие в приемном патрубке. Измерение дебита жидкости и ее обводненности производят на дневной поверхности скважины. Отборы продукции каждого пласта, а также измерения их дебитов и обводненностей на дневной поверхности производят поочередно после переключения запорного органа, сообщающего пласты с приемом насоса. Выбор насоса производят, исходя из необходимости превышения его подачи над плановыми дебитами нефти пластов в циклах их подключения, равного недоборам нефти из пластов в циклах их отключения. Периоды переключения пластов подбирают из условий обеспечения плановых отборов нефти из каждого пласта в соответствии с их продуктивностью. 4 ил.

Изобретение относится к нефтяной промышленности и может быть использовано для отбора газа из затрубного пространства нефтяной скважины и закачки его в выкидной коллектор. Технический результат - повышение надежности и эффективности работы насоса перекачки жидкости в емкости для вытеснения из них газа в напорную линию. Насосная установка включает две емкости с подводящими к ним газовыми линиями, соединенными с затрубным пространством скважины, и отводящими газовыми линиями, соединенными с выкидным коллектором скважины. Всасывающие и нагнетательные клапаны установлены соответственно на подводящих и отводящих газовых линиях. Имеются также насос для перекачки рабочей жидкости и линии для входа и выхода жидкости в нижних частях обеих емкостей. Каждая из линий сообщена с приемной и напорной сторонами перекачивающего насоса. Между насосом и емкостями расположен переключатель потоков жидкости, В каждой из емкостей размещены гибкие растягивающиеся мембраны. Они герметично разделяют емкости на две равные части. Пространство каждой емкости над мембраной заполнено жидкостью объемом, равным объему мертвого пространства над мембраной в газовой линии между верхней точкой емкости и клапанами для входа и выхода откачиваемого газа в цикле его вытеснения из емкости. 1 ил.

Изобретение относится к нефтяной промышленности и может быть применено для последовательного отбора нефти и воды из скважины. Устройство содержит спущенный в скважину электроцентробежный насос с заглушенным снизу приемным патрубком, проходящим через пакер, разделяющий верхний и нижний пласты, и имеющим отверстия для выхода продукции нижнего пласта в надпакерное пространство и отверстия для входа расслоившихся нефти и воды нижнего пласта в приемный патрубок, верхний и нижний поплавки промежуточной плотности с посадочными седлами, расположенными перед входными отверстиями, глубинный прибор, спущенный внутрь приемного патрубка и соединенный с телеметрической системой погружного электродвигателя кабелем. При этом в цилиндре над посадочным седлом верхнего поплавка промежуточной плотности расположен подпружиненный поршень с нижним штоком, выполненным с возможностью входа в посадочное седло поплавка. В нижней части приемного патрубка установлен подпружиненный обратный клапан. Причем упругость пружины поршня над верхним поплавком превышает упругость пружины обратного клапана. Технический результат заключается в повышении надежности последовательного отбора нефти и воды из скважины для раздельного учета продукции пластов при одновременно-раздельной эксплуатации скважины. 3 ил.

 


Наверх