Патенты автора Иванина Сергей Викторович (RU)

Изобретение относится к области обработки металлов давлением и может быть использовано при получении тонкостенных сложнопрофильных обечаек из титанового сплава. Устройство содержит матрицу и контейнер, выполненный из двух деталей. В стенке контейнера имеются отверстия для одновременного вакуумирования полости контейнера и полости трубной заготовки с фланцами. Для этого прижимные крышки устанавливают с радиальными зазорами между их фланцами и фланцами заготовки. После вакуумирования полость трубной заготовки герметично закрывают прижимными крышками с помощью гидроштока. В стенке контейнера выполнен канал для подвода инертной газовой среды высокого давления в канал одной из прижимных крышек. Толщину стенки трубной заготовки и ее наружный профиль предварительно определяют расчетно-опытным путем. Заготовку изготавливают механической обработкой из толстостенной трубы. В результате обеспечивается надежная работа устройства при изготовлении сложнопрофильных обечаек с фланцами. 2 н. и 2 з.п. ф-лы, 10 ил.

Изобретения относятся к машиностроению, а именно к турбинам для привода валов электрогенераторов, компрессоров, насосов и других устройств. В первом варианте роторной радиальной активно-реактивной турбины (фиг.1, 2, 3 и 4) рабочее тело поступает через трубопровод (2) в однопоточное закрытое центробежное колесо (7) ротора (3) с тангенциально установленными на его периферии соплами (17) Лаваля, в котором осуществляется сжатие рабочего тела с повышением его давления и энтальпии и его последующее сверхзвуковое истечение через сопла (17) на профилированные лопатки (24) ротора (19), выполненного в виде двух дисков (20 и 21), расположенных соосно с двух сторон ротора (3), жестко соединенных по периферии лопатками (24) и жестко с соосными валами (22) и (23) с возможностью вращения в сторону, противоположную вращению ротора (3). Валы соединены с полезной нагрузкой. Во втором варианте турбины (фиг.5, 6 и 7) рабочее тело поступает через трубопроводы (2 и 2'), расположенные в противоположные стороны, в два идентичных, выполненных зеркально, жестко закрепленных на валу (4) и жестко соединенных между собой фланцами при помощи рамы (29) кольцеобразной формы однопоточных закрытых центробежных колеса (7 и 7') ротора (3) с тангенциально установленными на его периферии соплами (17 и 17') Лаваля. Сжатое рабочее тело истекает через сопла (17 и 17') на профилированные лопатки (24) второго ротора (19), выполненного в виде двух дисков (20 и 20'), соединенных жестко, каждый со своим валом (22 и 22') соответственно, и между собой жестко по периферии лопатками (24), выполненными в виде желобов, ось которых параллельна его валам (22 и 22'), и скрепленными жестко силовым кольцом (30). Валы (22 и 22') расположены соосно и в противоположные стороны, коаксиально с валом (4) ротора (3), при этом они связаны через соответствующую передачу с полезной нагрузкой. Техническим результатом заявляемых роторных радиальных активно-реактивных турбин является повышение их абсолютной и удельной мощности. 2 н. и 4 з.п. ф-лы, 7 ил.

Изобретение относится к области информации, в частности к способам формирования визуально воспринимаемой информации. Технический результат заключается в осуществлении практической реализации визуально наблюдаемых короткоживущих изображений типа "салют" ("фейерверк", "метеорный дождь"), охватывающих значительную часть небосвода над зоной наблюдения. Способ формирования визуально воспринимаемой информации включает образование изображения из выводимых на орбиту искусственных спутников планеты, при этом искусственные спутники выводят на орбиту заблаговременно в составе космического аппарата-носителя, при создании орбитального изображения искусственные спутники отделяют от аппарата-носителя и сообщают им импульс характеристической скорости до 500 м/с таким образом, чтобы, двигаясь по собственным траекториям, они вошли в зону визуального наблюдения на высоте 60…100 км в определенный программный момент времени формирования орбитального изображения, при этом в состав искусственных спутников вводят пирофорные материалы. 4 з.п. ф-лы, 1 ил.
Изобретение может быть использовано в медицине, в области композиционных материалов для изготовления эндопротезов, используемых в ортопедии для замены пораженных естественных суставов человека. Эндопротез тазобедренного сустава, эндопротез коленного сустава, эндопротез локтевого сустава, эндопротез сустава пальца кисти, содержат элементы, выполненные из композиционного материала для замещения костной ткани, содержащего пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема, при общем количестве волокна 20…80% и материал-наполнитель, состоящий из кристаллического углерода с межслоевым расстоянием 3,42…3,44 ангстрема в количестве 50…70%, и аморфного углерода в виде кокса в количестве 10…20% от общего объема пор. При этом в аморфный углерод внедрены углеродные нанотрубки в количестве 0,05…1,0% от массы аморфного углерода. Изобретение позволяет повысить прочность эндопротезов до значений, равных и выше максимальной прочности костной ткани человека, 4 н. и 8 з.п. ф-лы.

Изобретение относится к возобновляемой энергетике, в частности, может быть применено в солнечной энергетике для придания дополнительных функций устройствам, преобразующим солнечное излучение в тепловую или электрическую энергию. Преобразователь солнечной энергии включает корпус, приемник лучистого потока, защитный экран, в который внедрены или располагаются на поверхности защитного экрана красители или тонкопленочные элементы. Тонкопленочные элементы представляют собой неорганические тонкие пластинки или органические полимерные пленки. На корпусе преобразователя солнечной энергии установлены источники излучения. На защитном экране установлены источники излучения. Изобретение позволяет увеличить функциональность, сформировать экологически и эстетически перспективные энергосберегающие комплексы различного масштаба и инженерно-архитектурного стиля. 3 з.п. ф-лы, 3 ил.
Изобретение относится к медицине, ортопедии. Чашка эндопротеза тазобедренного сустава выполнена из композиционного материала. Материал содержит пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема, при общем количестве волокна 20…80%. Материал-наполнитель состоит из кристаллического углерода с межслоевым расстоянием 3,42…3,44 ангстрема в количестве 50…70% и аморфного углерода в виде кокса в количестве 10…20% от общего объема пор матрицы. В аморфный углерод внедрены углеродные нанотрубки в количестве 0,05…1,0% от массы аморфного углерода. Изобретение позволяет повысить прочность эндопротеза до значений равных и выше максимальной прочности костной ткани человека. 2 з. п. ф-лы.

Способ повышения реактивной тяги в турбореактивном двухконтурном двигателе включает подачу окислительного и горючего рабочего тела в проточный тракт первого контура, их смесеобразование, сгорание и последующее истечение из него продуктов сгорания с получением механической энергии для вращения вентилятора двигателя. Подают окислительное рабочее тело в проточный тракт второго контура. Истечение продуктов сгорания окислительного и горючего рабочего тела осуществляют через сопло двигателя с образованием импульса реактивной тяги. Переобогащенную смесь из окислительного и горючего рабочего тела подают в камеры сгорания введенного в проточный тракт первого контура роторного газотурбинного двигателя. Образующиеся продукты неполного сгорания при истечении направляют радиально в проточный тракт второго контура двигателя для смешения их с потоком окислительного рабочего тела. Догорание этой смеси осуществляют с последующим сверхзвуковым истечением продуктов ее полного сгорания через сопло двигателя. Изобретение направлено на повышение мощности и экономичности работы турбореактивного двухконтурного двигателя, уменьшение его габаритов и массы, повышение ресурса и надежности работы. 2 н. и 6 з.п. ф-лы, 6 ил.

Группа изобретений относится к сельскохозяйственной технике и может быть использована в технологии хранения зерновых культур, комбикормов и других сыпучих материалов в пластиковых мешках. Способ включает герметизацию мешка после закладки сыпучего продукта и прорезание мешка при его извлечении. На внешней поверхности заполненного сыпучим продуктом герметичного мешка жестко закрепляют клапан. Прорезание мешка осуществляют через клапан. Прорезь не выходит за периметр клапана. В прорезь патрубка вставляют насос и подают в мешок газ необходимого состава, температуры и влажности или удаляют избыток газа, после чего закрывают клапан. При хранении сыпучего продукта до прорезания оболочки мешка измеряют бесконтактным образом его температуру. Подачу газа осуществляют через два и более клапана, часть из которых используют для принудительной подачи или удаления газа. Другие клапаны оснащают крышками или пробками с отверстиями для свободного прохода газа. Устройство выполнено в виде клапана из пленочного лоскута с нанесенным на одной поверхности слоем клея. На другой поверхности лоскута выполнена горловина с крышкой или пробкой, соединяющиеся с горловиной механической резьбой или натягом. Горловина может быть выполнена в виде дополнительного лоскута пленки с внутренним клеевым слоем. Крышка или пробка могут быть выполнены не менее чем с двумя отверстиями диаметром, не превышающим средний размер частицы сыпучего продукта. Использование группы изобретений позволит повысить качество хранения сыпучих продуктов. 2 н. и 1 з.п. ф-лы, 4 ил.

Роторный газотурбинный двигатель содержит жестко установленное на валу центробежное рабочее колесо с центробежными каналами, обеспечивающее сжатие поступающего в него окислительного рабочего тела, установленную коаксиально с ним камеру сгорания торообразной формы с тангенциально расположенными на ней соплами, обеспечивающими создание импульса реактивной силы от истекающих через сопла продуктов сгорания смеси горючего и окислительного рабочего тела для вращения рабочего колеса и камеры сгорания, средства подачи горючего рабочего тела и средства зажигания смеси горючего и окислительного рабочего тела. Внутренняя полость корпуса камеры сгорания разделена на отдельные камеры сгорания жестко закрепленными поперечными перегородками, которые являются продолжением лопаток рабочего колеса, и закреплены с образованием входных отверстий в отдельные камеры сгорания. Выходные отверстия центробежных каналов открыты в полости отдельных камер сгорания через входные отверстия. По меньшей мере по одному выходному отверстию центробежного канала открыто в полость каждой отдельной камеры сгорания, снабженной по меньшей мере одним соплом, выполненным сверхзвуковым, в виде круглого или плоского сопла Лаваля. Центральная ось сопла на его входе совпадает по направлению с центральной осью отдельной камеры сгорания на ее выходе. Отдельные камеры сгорания снабжены средствами подачи горючего рабочего тела, и средствами зажигания, размещенными в каждой поперечной перегородке, и обеспечивающими одновременное воспламенение смеси горючего и окислительного рабочего тела в примыкающих друг к другу отдельных камерах сгорания. Между центробежным рабочим колесом и отдельными камерами сгорания установлено средство дросселирования, обеспечивающее заданные расходные и термодинамические параметры сжатых потоков окислительного рабочего тела на входе в каждую отдельную камеру сгорания. Техническим результатом заявляемого изобретения является повышение эффективности и надежности работы роторного газотурбинного двигателя за счет организации устойчивого и эффективного горения топливо-воздушной смеси. 7 з.п. ф-лы, 3 ил.

Изобретение относится к медицине, конкретно к области композиционных материалов для изготовления эндопротезов. Композиционный материал для замещения костной ткани содержит пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема при общем количестве волокна 20…80% и материал-наполнитель, состоящий из кристаллического углерода с межслоевым расстоянием 3,42…3,44 ангстрема в количестве 50…70% и аморфного углерода в виде кокса в количестве 10…20% от общего объема пор. При создании композиционного материала для замещения костной ткани в аморфный углерод внедрены углеродные нанотрубки в количестве 0,05…1,0% от массы аморфного углерода. Композиционный материал по изобретению имеет прочность при циклическом нагружении, равную и выше максимальной прочности костной ткани человека. 1 табл.

 


Наверх