Патенты автора Николаев Андрей Валерьевич (RU)

Заявленное изобретение относится к системам испытания оборудования. Технический результат заключается в обеспечении достаточного тестового покрытия, гарантирующего максимально возможную полноту проведения испытаний. Аппаратно-программный комплекс включает средства эмуляции, а также средства измерений, контроля и/или диагностики состояния испытуемого объекта, а также объект испытаний. Средства эмуляции представляют собой соединенные между собой каналами передачи информации по меньшей мере одно средство формирования модели электрических и информационных систем, по меньшей мере одно средство идентификации модели приема и обработки синхронизированных массивов входных/выходных данных, по меньшей мере одно средство формирования тестов, по меньшей мере одно средство программной эмуляции и по меньшей мере одно средство аппаратной эмуляции, выполненное с возможностью электрического и/или информационного соединения с объектом испытаний, причем по меньшей мере одно средство измерений, контроля и/или диагностики состояния испытуемого объекта выполнено с возможностью оценки и фиксации состояния объекта испытаний и связано каналом передачи информации с по меньшей мере одним средством эмуляции. 6 з.п. ф-лы.
Изобретение относится к системам испытания оборудования. Технический результат заключается в обеспечении достаточного тестового покрытия, гарантирующего максимально возможную полноту проведения испытаний. Система содержит множество программно-аппаратных эмуляторов и средств измерения, подсистемы контроля и управления, обеспечивающие автоматизацию испытательных процессов, подсистемы обработки и передачи/приема данных. Программно-аппаратные эмуляторы и средства измерения электрических величин и информационных сигналов каждого из подмножеств соединены с соответствующими входами/выходами подсистемы контроля и управления, подсистемы обработки и передачи/приема данных и объекта испытаний, предназначенных для использования с соответствующим им подмножеством программно-аппаратных эмуляторов и средств измерения электрических величин и информационных сигналов, при этом подсистемы обработки и передачи/приема данных выполнены с возможностью приема/передачи данных по защищенному каналу связи. 2 з.п. ф-лы.

Изобретение относится к области сегнетожестких пьезокерамических материалов, устойчивых к электрическим и механическим воздействиям, предназначенных для ультразвуковых устройств и работающих при сильных электрических и механических воздействиях. Материал включает оксиды свинца, кадмия, циркония, титана, марганца, стронция, лантана и дополнительно - оксиды церия, тантала и сурьмы, при следующем соотношении компонентов, мас.%: PbO 63,232÷64,152; CdO 0,098÷0,198; ZrO2 18,990÷19,234; TiO2 11,143÷11,273; SrO 0,319÷1,814; MnO2 0,131÷0,435; La2O3 0,344÷0,366; CeO2 0,184÷0,960; Ta2O5 0,691÷1,984; Sb2O3 1,653÷2,799. Технический результат заключается в получении сегнетожесткого пьезокерамического материала с плотной мелкозернистой структурой, обеспечивающей улучшенные электрофизические параметры материала: повышенную механическую добротность Qm=1452-1496, повышенную диэлектрическую проницаемость ετ33/ε0=1488-1492, повышенные коэффициенты электромеханической связи Кр=0,61-0,62; К31=0,37-0,39; К33=0,73-0,76, что позволяет повысить удельную мощность пьезопреобразователей на основе предлагаемого пьезокерамического материала. 2 табл.

Использование: для контроля и (или) измерения давления жидкостей и газов. Сущность изобретения заключается в том, что интегральный преобразователь давления содержит кремниевый кристалл n-типа проводимости с плоской рабочей поверхностью и тонкой квадратной мембраной в центре кристалла с обратной стороны, на рабочей поверхности кристалла сформированы радиальные тензорезисторы р-типа проводимости, соединенные с помощью металлической электрической разводки в мостовую схему, на поверхности мембраны с обратной стороны кристалла методом анизотропного травления сформирован квадратный жесткий центр, по периметру мембраны и жесткого центра с рабочей стороны кристалла выполнены одинаковые по форме и размерам тензорезисторы, соединенные попарно, образуя четыре полумоста, с возможностью выбора идентичных рабочих тензорезисторов для настройки температурных уходов выходного сигнала, на рабочей поверхности кристалла вне зоны мембраны выполнены гальванически развязанные три группы сопротивлений из последовательно соединенных резисторов, с возможностью выборки номинала сопротивления для настройки выходных сигналов, четыре последовательно соединенные терморезистора расположены на одинаковом расстоянии друг от друга по периметру рабочей поверхности кристалла. Технический результат: обеспечение возможности увеличения точности и надежности преобразователя. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области сегнетомягких пьезокерамических материалов, предназначенных для ультразвуковых устройств, работающих в режиме приема, различных пьезодатчиков. Пьезокерамический материал, включающий оксиды свинца, циркония, титана, стронция, висмута и германия, дополнительно содержит оксиды бария, кальция и гадолиния при следующем соотношении компонентов, мас. %: ZrO2 19,16÷19,90; TiO2 11,02÷11,90; SrO 0,14÷0,75; Bi2O3 0,22÷0,82; GeO2 0,10÷0,30; BaO 0,15÷0,75; CaO 0,15÷0,55; Gd2O3 0,20÷0,60. Технический результат заключается в том, что получен пьезокерамический материал с улучшенными электрофизическими параметрами: повышенной термостабильностью диэлектрической проницаемости Ktε33=(2,35-2,48)⋅10-3°С-1 с высокими ее значениями ε33=2081-2086. 2 табл.

Изобретение относится к области приборостроения и может быть использовано при изготовлении микромеханических датчиков, таких как акселерометры, датчики угловой скорости, чувствительные элементы которых выполнены из диэлектрического материала. Способ получения рельефа в диэлектрической подложке заключается в том, что наносят на подложку защитную маску в виде многослойной системы двух материалов с различной толщиной слоев, формируют конфигурацию защитной маски, осуществляют травление подложки и удаляют защитную маску. Первый и второй защитные слои, образующие защитную маску, имеют разную конфигурацию, травление диэлектрической подложки проводят в два этапа, включающих первое травление диэлектрической подложки на определенную глубину и травление первого защитного слоя защитной маски, второе травление диэлектрической подложки на заданную глубину и удаление защитной маски полностью. Технический результат заключается в повышении прочности микромеханических датчиков за счет исключения концентраторов механических напряжений в местах переходов «исходная подложка - травленая поверхность». 5 ил.

Изобретение относится к области электрических испытаний, а именно к испытаниям оборудования при имитации отклонений параметров качества электроэнергии. Технический результат: обеспечение возможности проведения комплексной проверки различных типов оборудования на одном стенде, возможности проведения параллельных испытаний, повышение гибкости и оперативности изменения режимов работы оборудования при проведении испытаний, возможность обеспечить минимальное запаздывание преобразования электроэнергии с момента передачи соответствующей команды, а также обеспечить визуализацию измерений и результатов испытаний в режиме реального времени. В результате также обеспечивается существенное сокращение количества отказов оборудования в процессе эксплуатации за счет выявления на стадии заводских испытаний оборудования, содержащего неустойчивые по питанию элементы. Сущность: имитатор содержит по меньшей мере один программируемый источник постоянного тока, по меньшей мере один программируемый источник переменного тока, генератор импульсных помех, коммутационный блок, по меньшей мере один измерительный блок, блок управления, локальную вычислительную сеть (ЛВС), сетевой коммутатор, сервер обработки данных, устройство контроля изоляции, пульты дистанционного управления (ПДУ), по меньшей мере один контроллер сбора данных, сервер точного времени, связанный с антенной GPS/ГЛОНАСС. Источники постоянного и переменного тока выполнены с возможностью преобразования поступающей на их входы электроэнергии в выходные токи с заранее заданными параметрами. Выходы источников тока и генератора импульсных помех связаны с входами коммутационного блока, выходы которого выполнены с возможностью связи с соответствующими входами по меньшей мере одного испытуемого устройства и по меньшей мере с одним измерительным блоком. Блок управления выполнен в виде автоматизированного рабочего места (АРМ) оператора, АРМ оператора, сервер обработки данных, ПДУ, контроллер сбора данных, сервер точного времени, входы источников тока и генератора импульсных помех связаны посредством ЛВС через сетевой коммутатор. Устройство контроля изоляции связано с по меньшей мере одним контроллером сбора данных и выполнено с возможностью измерения сопротивления изоляции цепей имитатора. По меньшей мере один измерительный блок выполнен с возможностью измерять характеристики сигнала на выходе коммутационного блока и связан с контроллером сбора данных. ПДУ и АРМ оператора дополнительно выполнены с возможностью передачи информации по сети громкоговорящей связи. 1 з.п. ф-лы, 1 ил.

 


Наверх