Патенты автора Гурьянов Андрей Владимирович (RU)

Группа изобретений относится к области сельского хозяйства. В способе проводят оценку состава почвы возделываемого угодья и ее продукционного потенциала по пробам почвы, контроль состояния развития сельскохозяйственных культур по их видеоизображениям, полученным с помощью модуля визуального контроля, и техногенные воздействия на технологические процессы. Взятие и доставку проб почвы и фрагментов с/х культур с депрессивных участков угодья выполняют с помощью роботизированных аппаратов, при функционировании которых исключается вредное воздействие на почву и с/х культуры. На первом этапе оценку состава почвы и ее продукционного потенциала осуществляют сравнением видеоизображений с/х культур, находящихся на угодье, по результатам сравнения видеоизображений угодье разбивают на участки, однородные по составу почвы и ее потенциалу. На втором этапе оценки выявляют депрессивные участки, на которых необходимы техногенные воздействия, увеличивающие потенциал почвы, и с этих депрессивных участков осуществляют доставку фрагментов с/х культур и проб почвы. После этого выполняют лабораторный анализ состава почвы и с/х культур для каждого депрессивного участка, вырабатывают и осуществляют воздействия на процессы возделывания, с/х культуры и почву. Первый и 2-й модемы устанавливают соответственно на лабораторно-управляющем комплексе и модуле доставки, в каждом из которых формируют гармоническое колебание на частоте ωс, манипулируют его по фазе модулирующим кодом. Сформированный сложный сигнал с фазовой манипуляцией преобразуют по частоте с использованием частоты ωг1 1-го гетеродина. Выделяют напряжение 1-й промежуточной частоты ωпр1=ωс+ωг1, усиливают его по мощности, излучают в эфир, принимают на другом объекте, усиливают по мощности, преобразуют по частоте с использованием частоты ωг1 2-го гетеродина. Выделяют напряжение 2-й промежуточной частоты ωпр2=ωпр1-ωг1=ωс, перемножают с напряжением 1-го гетеродина с частотой ωг2, выделяют сложный сигнал с фазовой манипуляцией на частоте ωг1 2-го гетеродина, осуществляют его синхронное детектирование с использованием напряжения 2-го гетеродина с частотой ωг1 в качестве опорного напряжения. Выделяют низкочастотное напряжение, пропорциональное модулирующему коду, и используют его. На лабораторно-управляющем комплексе сложные сигналы с фазовой манипуляцией излучают на частоте ω1=ωпр1=ωг2, а принимают на частоте ω2=ωпр3=ωг1, где ωпр3 - третья промежуточная частота, а на модуле доставки фрагментов с/х культур, наоборот, сложные сигналы с фазовой манипуляцией излучают на частоте ω2, а принимают - на частоте ω1. Частоты ωг1 и ωг2 гетеродинов разносят на значение второй промежуточной частоты ωг2-ωг1=ωпр2. В модулирующий код M1(t) на лабораторно-управляющем комплексе включают команды на управление бортовыми системами модуля доставки фрагментов, в модулирующий код M2(t) модуля доставки включают видеоизображения с/х культур. Устройство содержит лабораторно-управляющий комплекс, модуль визуального контроля, модуль доставки фрагментов с угодья в комплекс и модуль визуального контроля, при этом в качестве модуля доставки применен беспилотный летательный аппарат. Лабораторно-управляющий комплекс и модуль доставки связаны между собой инфокоммуникационной связью. Средства связи выполнены в виде двух модемов, 1-й из которых размещен на комплексе, а 2-й - на модуле доставки фрагментов. Каждый модем содержит последовательно включенные задающий генератор, фазовый манипулятор, 2-й вход которого соединен с выходом источника дискретных сообщений, 1-й смеситель, 2-й вход которого соединен с выходом 1-го гетеродина, усилитель 1-й промежуточной частоты, 1-й усилитель мощности, дуплексер, вход-выход которого связан с приемопередающей антенной, 2-й усилитель мощности, 2-й смеситель, второй вход которого соединен с выходом 2-го гетеродина, усилитель 2-й промежуточной частоты, перемножитель, 2-й вход которого соединен с выходом 1-го гетеродина, полосовой фильтр и фазовый детектор, 2-й вход которого соединен с выходом 2-го гетеродина, а выход является выходом модема. На комплексе сигналы с фазовой манипуляцией излучаются на частоте ω1=ωпр1=ωг2, а принимаются - на частоте ω2=ωпр3=ωг1, а на модуле доставки сигналы с фазовой манипуляцией излучаются на частоте ω2, а принимаются на частоте ω1. Частоты ωг1 и ωг2 гетеродинов разнесены на значение 2-й промежуточной частоты ωг2-ωг1=ωпр2. Изобретения позволяют повысить эффективность управления процессами возделывания с/х культур. 2 н.п. ф-лы, 4 ил.

Предлагаемые способ и система относятся к средствам информационного обеспечения в сетях удаленного доступа, направленным на идентификацию сельскохозяйственной продукции, поступающей на реализацию. Техническим результатом является расширение диапазона рабочих частот без расширения диапазона частотной перестройки гетеродинов путем использования зеркальных каналов приема. Система, реализующая предлагаемый способ, содержит ридер, радиочастотную метку и приемную аппаратуру производителя. Ридер содержит задающий генератор 1, дуплексер 2, приемопередающую антенну 3, усилитель 4 высокой частоты, фазовый детектор 5, базу 6 данных идентификационных кодов, блок 7 сравнения кодов, ключ 8, линию 9 задержки, генератор 10 псевдослучайной последовательности, сумматор 11, перемножитель 12, узкополосный фильтр 13, фазовый манипулятор 14 и усилитель 15 мощности. Радиочастотная метка содержит пьезокристалл 16, микрополосковую антенну 17, электроды 18, шины 19 и 20, набор 21 отражателей. Приемная аппаратура производителя содержит приемную антенну 22, усилитель 23 высокой частоты, гетеродины 30 и 31, смесители 32 и 33, усилители 34, 35 и 47 промежуточной частоты, коррелятор 36, пороговый блок 37, ключи 38, 51, 52 и 53, усилители 48 и 49 утроенной промежуточной частоты, амплитудные детекторы 50, 52 и 53, блоки 56, 57 и 58 универсальных демодуляторов сложных ФМн сигналов, каждый из которых содержит перемножитель 25, 26, 40 и 41, узкополосные фильтры 27 и 43, фильтры 28 и 42 нижних частот, базу 29 данных сервера производителя, фазоинвенторы 44 и 45, блок 46 вычитания. 2 н.п. ф-лы, 5 ил.

Изобретение относится к сельскому хозяйству, в частности к оборудованию ферм по производству молока. Выходы измерителей (7)-(12) через модуль сбора данных соединены с входом компьютера фермы (14). На второй вход компьютера фермы через регистратор визуального контроля (16) подаются сигналы с видеокамер (15). Компьютер фермы линией (17) соединен с компьютерами пользователей (18). Компьютер фермы выполнен в виде последовательно включенных первого задающего генератора, первого фазового манипулятора, второй вход которого через формирователь модулирующего кода соединен с выходами модуля сбора данных и регистратора визуального контроля, первого усилителя мощности, логического элемента ИЛИ и передающей антенны (22.4). Компьютер пользователей выполнен в виде последовательно включенных приемной антенны (23), усилителя высокой частоты, первого смесителя, второй вход которого соединен с первым выходом первого гетеродина, первого фильтра нижних частот, первого перемножителя, второй вход которого соединен с выходом усилителя высокой частоты первого узкополосного фильтра, первого фазового детектора, второй вход которого соединен со вторым выходом первого гетеродина, и второй фильтр нижних частот, выход которого соединен с управляющим входом первого гетеродина. Расширяется диапазон рабочих частот. 4 ил.

Изобретение относится к области автоматизированного мониторинга состояния льда и окружающей среды с одновременным определением координат собственного местонахождения комплекса и передачей полученной информации по радиоканалу. Измерительно-навигационный комплекс содержит корпус 1, приемник 3 GPS-сигналов, блок 2.1 управления, блок 4 определения состояния атмосферы, блок 5 определения толщины ледового покрова, блок 6 определения состояния аккумуляторной батареи, блок 7 электропитания и приемопередающее устройство, которое выполнено в виде первой радиостанции 8.1. Стационарный пост мониторинга (СПМ) выполнен в виде второй радиостанции 8.2. Каждая радиостанция 8.1 (8.2) содержит блок 2.1 (2.2) управления, синхронизатор 16.1 (16.2), генератор 17.1 (17.2) ПСП, синтезатор 18.1 (18.2) несущих частот, фазовый манипулятор 19.1 (19.2), синтезатор 20.1 (20.2) частот первого гетеродина, первый смеситель 21.1 (21.2), усилитель 22.1 (22.2) первой промежуточной частоты, первый усилитель 23.1 (23.2) мощности, дуплексер 24.1 (24.2), приемопередающую антенну 25.1 (25.2), второй усилитель 26.1 (26.2) мощности, синтезатор 27.1 (27.2) частот второго гетеродина, второй смеситель 28.1 (28.2), усилитель 29.1 (29.2) второй промежуточной частоты, перемножитель 30.1 (30.2), полосовой фильтр 31.1 (31.2), фазовый детектор 32.1 (32.2). Приемник 3 GPS-сигналов содержит приемную антенну 9, усилитель 10 мощности, смеситель 11, усилитель 12 второй промежуточной частоты, перемножитель 13, полосовой фильтр 14 и фазовый детектор 15. Технический результат - повышение надежности обмена радиотелеметрической и командной информацией между измерительно-навигационным комплексом. Система мониторинга состояния льда и окружающей среды содержит измерительно-навигационный комплекс (ИНК), устанавливаемый на дрейфующий лед, стационарный пост мониторинга (СПМ), GPS-спутники и ИСЗ-ретранслятор S. 5 ил.

Изобретение относится к системам для дистанционного контроля состояния окружающей среды. Сущность: система содержит блок управления, блок определения координат по системе спутниковой навигации, блок определения состояния атмосферы, блок определения толщины ледяного покрова, блок электропитания, установленные в термостатируемом корпусе. При этом система снабжена спутниками-ретрансляторами (9.1-9.3) спутниковой системы связи и передающим устройством. Передающее устройство состоит из блока (1) управления, задающего генератора (2), фазового манипулятора (3), гетеродина (4), смесителя (5), усилителя (6) первой промежуточной частоты, усилителя (7) мощности, передающей антенны (8). Блок определения координат по системе спутниковой навигации содержит два приемника сложных сигналов с фазовой манипуляцией. Первый приемник сложных сигналов с фазовой манипуляцией состоит из приемной антенны (10), усилителя (11) высокой частоты, гетеродина (12), смесителя (13), фильтра (14) нижних частот, фазовращателя (16) на 90°, перемножителя (17), фазового детектора (18), блока (19) регистрации и анализа. Второй приемник сложных сигналов с фазовой манипуляцией состоит из приемной антенны (31), усилителя (32) высокой частоты, гетеродина (33), смесителя (34), фильтра (35) нижних частот, перемножителя (37), фазовращателя (38) на 90°, фазового детектора (39). Технический результат: повышение достоверности определения местоположения комплексов, установленных на дрейфующий лед. 3 ил.

Предлагаемый способ относится к измерительной технике и может быть использован для измерения расхода жидкости с применением трибоэлектрического эффекта, электромагнитного явления и коррекционной обработки электрических сигналов. Отличительная особенность способа заключается в установке на измерительном участке трубопровода датчиков на расстояние λ. Полученные на выходе датчиков электрические сигналы усиливаются усилителями и подаются на коррелятор, состоящий из блока регулируемой задержки, перемножителя, фильтра нижних частот и экстремального регулятора. На выходе перемножителя выделяются низкочастотное напряжение, пропорциональное корреляционной функции R(τ), где τ - текущая временная задержка. Изменением текущей временной задержки τ обеспечивают максимальное значение коррекционной функции R(τ). Экстремальный регулятор поддерживает значение коррекционной функции R(τ) на максимальном уровне, воздействуют на управляющий вход блока регулируемой задержки. Максимальное значение коррекционной функции R(τ) обеспечивается при τ=τт. Определяют скорость V движущейся жидкости на измерительном участке трубопровода ее расход Q=S⋅V, где S - сечение измерительного участка трубопровода. Технический результат - расширение функциональных возможностей способа путем определения скорости движущейся жидкости. 2 ил.

Изобретение относится к сельскохозяйственному машиностроению. Устройство позиционирования наземного мобильного средства (10) при возделывании агрокультур (14) содержит первый блок искусственного зрения, размещенный на наземном мобильном средстве (10), блок обработки видеосигнала, беспилотный летательный аппарат (7), беспилотный дистанционно управляемый вертолет, второй блок искусственного зрения, два блока передачи-приема данных, блок тестирования и управления, блок ориентации в трехмерных координатах. Беспилотный дистанционно управляемый вертолет имеет возможность двигаться в пределах возделываемого угодья. Первый блок передачи-приема данных, блок встроенного тестирования и управления, блок ориентации в трехмерных координатах установлены на наземном мобильном средстве (10). Второй блок искусственного зрения и второй блок передачи-приема данных размещены на беспилотном дистанционно управляемом вертолете. Выход второго блока искусственного зрения соединен с входом второго блока передачи-приема данных. Выход первого блока передачи-приема данных соединен с первым входом блока встроенного тестирования и управления. Выход блока ориентации в трехмерных координатах соединен со вторым входом блока встроенного тестирования и управления. Беспилотный дистанционно управляемый вертолет снабжен синхронизатором, переключателем сектора обзора, генератором строб-импульса и четырьмя радиолокаторами, каждый из которых состоит из последовательно включенных передатчика, управляющий вход которого соединен с выходом синхронизатора, антенного переключателя, вход-выход которого связан с приемопередающей антенной, а управляющий вход соединен с выходом переключателя сектора обзора приемника, управляющий вход которого через генератор строб-импульса соединен с выходом синхронизатора, и блока обработки сигнала, управляющий вход которого соединен с выходом синхронизатора, а выход подключен к соответствующему входу второго блока приема-передачи данных, связанного радиоканалом с первым блоком передачи-приема данных и блоком тестирования и управления. Приемопередающие антенны размещены на концах лопастей несущего винта вертолета, принятые ими сигналы обрабатываются по алгоритму синтезированной апертуры. Обеспечивается расширение функциональных возможностей беспилотного дистанционно управляемого вертолета путем дистанционного структурного анализа почвы возделываемого угодья и обнаружения различных металлических изделий, скрытых под земной поверхностью. 5 ил.

Изобретение относится к информационно-измерительной системе и может быть использовано в радиолокационной технике для высокоточной оценки ледовой обстановки в районах морской добычи и транспортировки нефтегазовых ресурсов. Достигаемый технический результат - обеспечение однозначности отсчета угловой координаты β при сохранении требуемой точности измерения. Радиолокационная система, реализующая способ, содержит блок управления РЛС, синтезатор частот, генератор М-кода, два модулятора, два усилителя мощности, СВЧ коммутатор, блок управления антенной системой, блок антенной системы, приемопередающую антенну, три приемные антенны, четыре усилителя высокой частоты, четыре смесителя, устройство временной автоматической регулировки усиления, четыре усилителя промежуточной частоты, коммутатор промежуточной частоты, усилитель промежуточной частоты, блок автоматической и ручной регулировки усиления, два блока фазовых детекторов, фазовращатель, два блока аналого-цифровых преобразователей квадратурных сигналов в цифровую форму, блок первичной цифровой обработки, двухпортовое буферное оперативное запоминающее устройство, цифровой измеритель, четыре перемножителя, четыре узкополосных фильтра, опорный генератор, два разовых детектора, два фазометра, сумматор и вычитатель. 2 н.п. ф-лы, 2 ил.

Изобретение относится к средствам информационного обеспечения в сетях удаленного доступа и направленным на идентификацию агропромышленной продукции. Техническим результатом является повышение помехоустойчивости и чувствительности приема сложных сигналов с фазовой манипуляцией путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам, используемых для идентификации продукции. Система, реализующая предлагаемый способ, содержит ридер, радиочастотную метку и приемную аппаратуру производителя. Ридер содержит задающий генератор 1, дуплексер 2, приемо-передающую антенну 3, усилитель 4 высокой частоты, фазовый детектор 5, базу данных 6 идентификационных кодов, блок 7 сравнения кодов, ключ 8, линию 9 задержки, генератор 10 псевдослучайной последовательности, сумматор 11, перемножитель 12, узкополосный фильтр 13, фазовый манипулятор 14 и усилитель 15 мощности. Радиочастотная метка содержит пьезокристалл 16, микрополосковую антенну 17, электроды 18, шины 19 и 20, набор 21 отражателей. Приемная аппаратура производителя содержит приемную аппаратуру 22, усилитель 23 высокой частоты, гетеродин 24, смеситель 25, фильтр 26 нижних частот, базу данных 27 сервера производителя, систему ФАПЧ 28, перемножитель 29, узкополосный фильтр 30 и фазовый детектор 31. 2 н.п. ф-лы, 4 ил.

Предлагаемое устройство относится к приборостроению и предназначено для измерения расхода газовых и жидких топливных сред. Ультразвуковой датчик расхода газовых и жидких топливных сред содержит генератор 1 псевдослучайной последовательности, генератор 2 гармонического колебания, фазовый манипулятор 3, усилители 4, 8 и 14, излучатель 5, трубопровод 6, приемный элемент 7, блок 9 регулируемой задержки, дифференциатор 10, перемножитель 11, коррелятор 12, фильтр 13 нижних частот и указатель 15 расхода. Технический результат - повышение точности измерения скорости движущихся частиц в трубопроводе заданного диапазона путем использования производной автокорреляционной функции и сложных сигналов с фазовой манипуляцией. 2 ил.

Изобретения относятся к технике электросвязи, в частности к перспективным комбинированным системам волоконно-эфирной структуры, типичными представителями которых являются интенсивно развивающиеся локальные распределенные системы класса ROF (Radio-Over-Fiber). Технический результат состоит в повышении помехоустойчивости преобразователя частоты путем подавления ложных сигналов, помех, принимаемых по дополнительным каналам. Для этого модуль содержит приемную антенну 1, смеситель 2, полосовый фильтр 3, усилитель 4 промежуточной частоты, усилитель 5 суммарной частоты, амплитудный детектор 6, ключ 7, направленный ответвитель 8, первый 9 и второй 10 лазеры, фотодиод 11, электронный усилитель 12 и блок 13 восстановления несущей частоты. 2 н.п. ф-лы, 2 ил.

Предлагаемый комплекс относится к области сельского хозяйства и предназначен для подповерхностного зондирования сельскохозяйственных угодий, обнаружения очагов заражения сельскохозяйственных культур болезнями, лечения депрессивных участков возделываемых угодий, а также для определения местоположения источников радиоизлучений (ИРИ), например «черных ящиков» с сигнализацией, возникающих при катастрофах самолетов. Технической задачей изобретения является расширение функциональных возможностей известного технического решения путем обнаружения очагов заражения сельскохозяйственных культур болезнями, лечения депрессивных участков возделываемых угодий и определения местоположения источников радиоизлучений (ИРИ), например «черных ящиков» с сигнализацией, возникающих при катастрофах самолетов. Вертолетный радиоэлектронный комплекс для мониторинга сельскохозяйственных угодий содержит синхронизатор 1, передатчики 2.1-2.4, антенные переключатели 3.1-3.4, приемопередающие антенны 4.1-4.4, приемники 5.1-5.4, блоки 6.1-6.4 обработки, переключатель 7 сектора обзора, генератор 8 строй-импульса, цветной индикатор 9, тепловизионный датчик 10, телевизионный датчик 11, блок 12 приема, приемные антенны 13, 14 и 15, блок 16 определения местоположения ИРИ, лазер 17. Блок 16 определения местоположения ИРИ содержит усилители 19-22 высокой частоты, гетеродин 23, смеситель 24, усилитель 25 промежуточной частоты, демодулятор 26 сложных ФМн сигналов, перемножители 27, 28, 31-38, 44, узкополосные фильтры 29, 35-38, 46, фазометры 39, 40, 47, 48, блок 41 вычитания, сумматор 42, линию задержки 43, фазовый детектор, блок 52 регистрации и анализа. 6 ил.

Предлагаемые способ и устройство относятся к электроизмерительной технике и могут быть использованы для измерения электрической энергии в условиях переменного тока для целей коммерческого учета и обнаружения факта и вида хищения электроэнергии, например, на объектах агропромышленного комплекса. Устройство, реализующее предлагаемый способ, содержит датчик 1 тока фазного провода, датчик 2 тока нулевого провода, датчик 3 тока фазного провода, включенного в фазный провод до ввода в строение, датчик 4 напряжения нагрузки, включенный параллельно нагрузки 5, перемножители 6, 7, 8, блок 9 математической обработки, индикатором 10, блок 11 дистанционной передачи информации, формирователь 12 модулирующего кода, генератор 13 высокой частоты, фазовый манипулятор 14, усилитель 15 мощности и передающую антенну 16. Пункт контроля содержит приемную антенну 17, усилитель 18 высокой частоты, первый 19 и второй 39 смеситель, блок 20 поиска, первый 21 и второй 38 гетеродины, усилитель 22 промежуточной частоты, удваиватель (селектор) 25 фазы, блок 27 сравнения, пороговый блок 28, линии задержки 29, ключ 30, демодуляторы 31 и 40 Фмн сигналов, перемножители 32, 33, 41 и 42, узкополосные фильтры 34 и 43, фильтры 35 и 44 нижних частот, блок 36 регистрации, фазоинверторы 45 и 46, блок 47 вычитания. Техническим результатом при реализации заявленного решения является повышение достоверности и надежности дистанционного измерения потребляемой электроэнергии и выявления наличия, вида и времени ее хищения путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам, и ослабления узкополосных помех, принимаемых по основному каналу. 2 н.п. ф-лы, 5 ил.

Изобретение относится к области защиты растений. Способ комбинированной обработки растений для уничтожения вредителей и микроорганизмов включает воздействие направленным потоком теплоносителя и направленным бактерицидным излучением. В качестве теплоносителя используют поток горячего воздуха. Температура воздуха составляет от 50 до 150°С. Влажность от 0,01 до 0,15. Скорость истечения потока от 3 до 8 м/с. В качестве бактерицидного излучения применяют ультрафиолетовое излучение с длиной волны 254 нм. Плотность облучения составляет 400-600 Вт/м2. Продолжительность облучения несколько минут. Обеспечивается повышение эффективности защиты растений от вредителей и микроорганизмов. 5 ил.

Предлагаемая система относится к области автоматизированного мониторинга окружающей среды в условиях Арктики, а именно состояния атмосферы и льда с одновременным определением координат собственного местонахождения навигационных комплексов и передачей полученной информации по радиоканалам, и может быть использована в качестве средства мониторинга окружающей среды в зоне движения льда для безопасной проводки судов по северному морскому пути и обеспечения безопасности объектов нефтегазопромысловой и гидротехнической инфраструктуры на шельфе и в прибрежной зоне в ледовитых морях и в условиях ледяного покрова, в том числе и дрейфующего. Технической задачей изобретения является обеспечение возможности для удаленного автоматизированного мониторинга окружающей среды на больших территориях в условиях Арктики и оперативного обмена информаций между диспетчерским пунктом и навигационными комплексами путем дуплексной радиосвязи с использованием сложных сигналов с фазовой манипуляцией, компьютеров и космических аппаратов спутниковой системы связи в качестве ретрансляторов. Предлагаемая система содержит диспетчерский пункт ДП, навигационные комплексы (HKi, i=1,2, … n) и космические аппараты (КА) спутниковой системы связи, приемопередающее устройство 1 (l.i), блок 21.i определения координат по системе спутниковой навигации, блок 22.i измерения толщины ледового покрова, блок 23.i измерения состояния атмосферы, подводный навигационный маяк 24.i. Приемопередающее устройство 1 (1.i) содержит блок 2 (2.i) управления, компьютер 3 (3.i), задающий генератор 4 (4.i), формирователь 5 (5.i) модулирующего кода, фазовый манипулятор 6 (6.i), первый гетеродин 7 (7.i), первый смеситель 8 (8.i), усилитель 9 (9.i) первой промежуточной частоты, первый усилитель 10 (10.i) мощности, дуплексер 11 (11.i), приемопередающую антенну 12 (12.i), второй усилитель 13 (13.i) мощности, второй гетеродин 14 (14.i), второй смеситель 15 (15.i), усилитель 16 (16.i) второй промежуточной частоты, перемножитель 17 (17.i), полосовой фильтр 18 (18.i) и фазовый детектор 19 (19.i), (i=1,2, …, n). 4 ил.

Изобретение относится к информационно-измерительной системе и может быть использовано в радиолокационной технике для высокоточной оценки ледовой обстановки в районах морской добычи и транспортировки нефтегазовых ресурсов. Достигаемый технический результат - определение местоположения приближающихся опасных объектов путем использования второй и третьей измерительных баз, расположенных в азимутальной и гипотенузной плоскостях, антенны которых размещены в виде прямоугольного треугольника. Радиолокационная система (РЛС), реализующая предлагаемый способ, содержит блок управления РЛС, синтезатор частот, генератор М-кода, два модулятора, два усилителя мощности, СВЧ коммутатор, блок управления антенной системой, блок антенной системы, три антенны, три усилителя высокой частоты, три смесителя, устройство временной автоматической регулировки усиления, четыре усилителя промежуточной частоты, коммутатор промежуточной частоты, блок автоматической и ручной регулировки усиления, четыре блока фазовых детекторов, фазовращатель, два блока аналого-цифровых преобразователей квадратурных сигналов в цифровую форму, блок первичной цифровой обработки, двухпортовое буферное оперативное запоминающее устройство, цифровой измеритель, три перемножителя, три узкополосных фильтра, опорный генератор. 2 н.п. ф-лы, 2 ил.

Предлагаемый способ относится к измерительной технике и может быть использован для измерения расхода жидкости с применением трибоэлектрического эффекта и электромагнитного явления. Устройство, реализующее предлагаемый способ, содержит трубопровод 1, ферритовое кольцо 2, обмотку 3, помещенную в экран 4 с щелью 5, измерительный блок 6, усилитель 7, регистратор 8, измерительный участок 9, металлические кольца 10 и направляющие лопатки 11. Технический результат - повышение точности и чувствительности к малым расходам жидкости путем создания большей турбулентности движущейся жидкости и повышения ее поляризации. 2 ил.

Изобретение относится к области приборостроения, а именно к счетчикам измерения расхода количества воды, протекающей в трубах с диаметром прохода больше 40 мм. Индуктивный датчик тахометрического счетчика жидкости содержит чувствительный элемент в виде катушки индуктивности (1), расположенной в заглушенной с одной стороны трубке (2) у ее торца. Торец трубки (2) расположен вблизи закрепленной на турбинке (3) мишени (4). Катушка индуктивности (1) соединена кабелем (5) с конденсатором (6) колебательного контура, подсоединенного к микроконтроллеру (7). Турбинка (3) установлена с возможностью вращения в подшипниковых узлах (8), расположенных в направляющих (9) корпуса счетчика расхода жидкости (10). Конденсатор (6) колебательного контура подсоединен к микроконтроллеру (7), размещенному на электронной плате устройства индуктивного датчика (11), которое герметично закреплено на корпусе счетчика расхода жидкости (10). Турбинка (3) состоит из двух участков: участка с лопастями (12) и цилиндрического участка (13) с мишенью (4). Мишень (4) выполнена из плоского ферромагнитного материала, изогнута и закреплена по радиусу цилиндрической части турбинки (13). Плоская развертка мишени (в плане) выполнена в виде трех одинаковых прямоугольников (14), соединенных двумя тонкими перемычками разной длины (15) и (16). Технический результат состоит в существенном упрощении конструкции индуктивного датчика и способа его работы, а также повышения надежности работы устройства в целом. 11 ил.

 


Наверх