Патенты автора Есипов Роман Сергеевич (RU)

Изобретение относится к металлургической промышленности, а именно к комбинированной упрочняющей химико-термической обработке поверхности стальных изделий и инструмента, работающих в условиях локального изнашивания. Способ обработки изношенных локальных участков поверхности стальной детали включает деформационную обработку изношенных локальных участков поверхности стальной детали и последующее низкотемпературное ионное азотирование стальной детали, причем при деформационной обработке осуществляют локальное упрочнение изношенных локальных участков поверхности стальной детали путем дробеструйной обработки с возможностью интенсификации диффузионного насыщения азотом указанных участков при последующем низкотемпературном ионном азотировании, при этом ионное азотирование проводят при температуре 400-450°С. Технический результат заключается в повышении износостойкости поверхности за счет формирования на изделии локальных участков упрочненного слоя, имеющих плавный градиент механических свойств от поверхности в сторону сердцевины изделия. 2 ил., 1 пр.

Изобретение относится к способам упрочнения поверхности детали. Способ включает создание чередующихся упрочненных и неупрочненных прямолинейных участков, причем упрочненные прямолинейные участки образуют путем формирования азотированного слоя при нагреве лазерным лучом в атмосфере азота, при этом упомянутые участки располагают перпендикулярно вектору силы трения, создаваемой на рабочей поверхности детали, после чего осуществляют обкатку детали с образованием в неупрочненных участках рельефа в виде канавок. Технический результат заключается в повышении износостойкости детали типа зубчатое колесо. 3 ил.

Изобретение относится к области оборудования для модификации поверхности деталей в низкотемпературной газоразрядной плазме и может быть использовано в ионно-плазменных процессах очистки, активации и легирования поверхности деталей. Установка для ионного азотирования в плазме тлеющего разряда содержит вакуумную камеру и подключенные к ней форвакуумный насос и блок управления расходом газа, к которому подключены баллоны с газами, электроды для возбуждения тлеющего разряда, установленные в рабочем пространстве камеры, анод и подложка-катод, соединенные с источником питания разряда. Указанная установка содержит электромагнитную систему, установленную под подложкой-катодом, с возможностью одновременного генерирования в камере скрещенных электрических и магнитных полей, обеспечивая формирование тороидальной области вращения электронов, в которой образуется плазма азота повышенной плотности. Обеспечивается увеличение скорости и эффективности ионного азотирования в низкотемпературной газоразрядной плазме. 3 ил.

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, работающих в условия износа, в медицине и других отраслях промышленности. Способ низкотемпературного ионного азотирования изделий из титановых сплавов включает подачу в вакуумную камеру с упомянутыми изделиями плазмообразующей газовой смеси, содержащей азот и аргон. Азотирование проводят в тлеющем разряде при температуре 400-450°С с постоянной прокачкой, при которой откачивают аргон из вакуумной камеры и одновременно подают в нее упомянутую газовую смесь для поддержания в ней давления 300 Па. В качестве упомянутой газовой смеси подают газовую смесь, содержащую 20 мас. % азота и 80 мас. % аргона. Обеспечивается повышение эффективности процесса низкотемпературного ионного азотирования титановых сплавов. 2 ил., 1 пр.

Изобретение относится к обработке металлов поверхностной пластической деформацией и вакуумному ионно-плазменному азотированию и может быть использовано в машиностроении и других областях промышленности для обработки широкого ассортимента деталей машин и инструмента, изготовленных из сталей. Способ низкотемпературного ионного азотирования стального изделия в плазме тлеющего разряда включает катодное распыление, вакуумный нагрев изделия в плазме тлеющего разряда, состоящей из смеси азотосодержащего и инертного газов. Указанный нагрев изделия в плазме тлеющего разряда проводят при температуре 430оС, причем сначала осуществляют поверхностную интенсивную пластическую деформацию посредством ультразвуковой обработки поверхности стального изделия с подачей инструмента S=2 м/мин, рабочей частотой f=22 кГц и частотой вращения детали N=30 об/мин. Обеспечивается осуществление низкотемпературной обработки в тлеющем разряде и повышение прочностных, трибологических характеристик поверхности, контактной долговечности и износостойкости стальных деталей. 4 ил., 1пр.

Изобретение относится к химико-термической обработке и может быть использовано в машиностроении и других областях промышленности. Способ обработки поверхности стального изделия включает проведение интенсивной поверхностной пластической деформации и ионное азотирование. Проведение интенсивной поверхностной пластической деформации осуществляют посредством дробеструйной бомбардировки поверхности стальными шариками с подачей сопла S=2 м/мин с углом атаки а ионное азотирование проводят в тлеющем разряде. Обеспечивается повышение эксплуатационных характеристик материала, повышение твердости и контактной износостойкости упрочненного слоя в результате создания макронеоднородной структуры на поверхности стального изделия. 3 ил., 1пр.

Изобретение относится к области химико-термической обработки, а именно вакуумному ионно-плазменному азотированию, и может быть использовано в машиностроении. Способ локального азотирования стального изделия в тлеющем разряде в магнитном поле включает проведение вакуумного нагрева участка стального изделия, подверженного интенсивному износу в плазме азота повышенной плотности, при этом упомянутый участок стального изделия помещают в центр кольцевой магнитной системы, установленной на катоде, в которой формируют плазму азота повышенной плотности, и осуществляют вакуумный нагрев с формированием на нем нитридного слоя, состоящего из нитрида железа Fe4N и нитрида хрома Cr4N. Обеспечивается повышение контактной долговечности и износостойкости упрочненного слоя. 2 ил., 1 пр.

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для локального поверхностного упрочнения материалов. Способ локального ионного азотирования стального изделия включает проведение вакуумного нагрева стального изделия в плазме азота повышенной плотности, при этом плазму азота повышенной плотности формируют в тороидальной области осциллирующих электронов, движущихся по циклоидальным замкнутым траекториям, образованной скрещенными электрическими и магнитными полями, посредством магнитной системы, выполненной с жидкостным охлаждением и содержащей стационарные магниты. Стальное изделие располагают с обеспечением расположения участка, подлежащего азотированию в магнитном поле, в зоне плазмы азота повышенной плотности для интенсификации диффузионного насыщения этого участка и формирования зоны азотирования в магнитном поле. Переходную зону азотирования обеспечивают на участке стального изделия, удаленном от магнитной системы и расположенном между участком упомянутого изделия с зоной азотирования в магнитном поле, на котором эффективная толщина азотированного слоя составляет 80 мкм, и участком упомянутого изделия с зоной азотирования вне магнитного поля, на котором эффективная толщина азотированного слоя составляет 40 мкм. Обеспечивается повышение контактной долговечности и износостойкости поверхности изделия за счет его локальной обработки. 3 ил., 1 пр.

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для обработки широкого ассортимента деталей машин и инструмента, изготовленных из стали. Способ низкотемпературного ионного азотирования стальных изделий в магнитном поле включает проведение вакуумного нагрева изделия в плазме азота повышенной плотности, которую создают в тороидальной области осциллирующих электронов, движущихся по циклоидальным замкнутым траекториям, образованным в скрещенных электрическом и магнитном полях. Перед ионным азотированием путем интенсивной пластической деформации кручением формируют ультрамелкозернистую структуру материала изделия, обеспечивающую процесс диффузионного насыщения поверхностного слоя азотом при азотировании. Обеспечивается повышение контактной долговечности и износостойкости за счет формирования ультрамелкозернистой структуры материала. 2 ил., 1 пр.

 


Наверх