Патенты автора Белобородов Михаил Николаевич (RU)

Устройство для тестирования датчиков давления ударной волны содержит ствол с патронником и ствольную коробку с размещенными внутри нее затворным, предохранительным и ударно-спусковым механизмами. Внутри ствола установлен пламегаситель, а на дульном срезе - опорный элемент сопряжения с тестируемым датчиком, выполненный из деформируемого упругого материала и содержащий продольное отверстие переменного сечения, а также совокупность перпендикулярных ему радиальных отверстий, расположенных выше опорной поверхности. Ствольная коробка снабжена двумя расположенными симметрично относительно продольной геометрической оси устройства рукоятками с накладками из упруго-эластичного ударогасящего материала. Пламегаситель может быть выполнен в виде набора тонких металлических пластин, расположенных параллельно оси канала ствола, опорный элемент сопряжения с тестируемым датчиком - из термостойкого пористого материала, например, на основе кремнийорганического каучука, а накладки рукояток - из мелкопористой резины. Техническим результатом является тестирование датчиков давления ударной волны, находящихся непосредственно в условиях их использования на измерительных лучах испытательной площадки, и повышение точности измерений при одновременном снижении опасности применения. 3 з.п. ф-лы, 5 ил.

Изобретение относится к области испытательной и измерительной техники, конкретно к способам внешнебаллистических измерений, заключающихся в визуальном отслеживании и регистрации поведения боеприпаса на траектории. Техническим результатом изобретения является повышение информативности испытаний и точности их результатов за счет обеспечения наблюдаемости отслеживаемых объектов по всей траектории полета при снижении энергозатрат на работу используемого оборудования. Способ траекторного отслеживания боеприпасов включает размещение нескольких оптико-электронных станций (ОЭС) слежения для отслеживания движения объекта по предполагаемой траектории, расчет направления перемещения объекта для каждой ОЭС, ориентацию каждой ОЭС на расчетные направления съемки, обработку видеосигнала и передачу результатов съемки для дальнейшего анализа. Для осуществления способа ОЭС размещают со взаимным перекрытием их поля зрения в горизонтальном направлении вдоль возможной траектории полета боеприпаса, ориентацию отдельных ОЭС на направления съемки осуществляют с учетом захвата в поле зрения в вертикальной плоскости «пучка» траекторий, рассчитанных с учетом погрешностей измерений в момент выстрела скорости бросания, угла бросания и азимута. Видеофиксацию ведут поочередным последовательным включением ОЭС. 3 ил.

Группа изобретений относится к способу испытаний мобильных боевых робототехнических комплексов и к стенду для испытаний. Способ заключается в последовательном/одновременном выполнении необходимых тестовых процедур с применением программного имитационного моделирования в виртуальной среде. Виртуальная среда выполнена интерактивной. Управление виртуальной средой частично осуществляется самим испытуемым мобильным боевым робототехническим комплексом. Стенд содержит установочную платформу для размещения испытуемого объекта, со смонтированными на ней устройствами взаимодействия с движителями объекта, выполненными с возможностью регулируемого вращения и связанными информационными каналами с комплектом управляющей и регистрирующей аппаратуры. Платформа снабжена системой вибровозбуждения и размещена на отдельном основании. Дополнительно стенд содержит комплекс оборудования отображения виртуальной окружающей среды в оптическом видимом, инфракрасном, ультрафиолетовом и акустическом диапазонах. Платформа для размещения испытуемого объекта установлена в центре замкнутого пространства, образованного экранной поверхностью. Достигается возможность проведения испытаний с использованием виртуальной среды. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области испытания боеприпасов. Способ определения глубины проникания бронебойных цельнокорпусных калиберных и подкалиберных снарядов в толстостенную преграду включает выстрел снарядом по преграде и последующее определение его скорости доплеровским локатором до и после поражения преграды. Ось диаграммы направленности антенны локатора ориентируется под максимально малым углом к завершающей части траектории движения снаряда. Скорость снаряда определяется по сигналу, отраженному от его донной хвостовой части. Глубина проникания определяется путем интегрирования полученной по результатам измерений зависимости скорости движения снаряда от начала торможения до нулевого значения. Способ позволяет повысить точность измерения скорости снаряда, получить более достоверную информацию при оценке пробивного действия снарядов. 2 ил.

 


Наверх