Патенты автора ЧЖАН Яньфэн (CN)

Изобретение относится к синтезу Фишера-Тропша. Способ проведения синтеза Фишера-Тропша включает хлорщелочной процесс, при этом в целом способ включает: 1) газификацию исходного материала с целью получения сырого синтез-газа для синтеза Фишера-Тропша, содержащего Н2, СО и СО2; 2) электролиз насыщенного раствора NaCl с использованием промышленного хлорщелочного процесса с целью получения раствора NaOH, Cl2 и H2; 3) удаление СО2 из сырого синтез-газа с использованием раствора NaOH, полученного на стадии 2), с целью получения чистого синтез-газа или на стадии 3) СО2 сначала отделяют от сырого синтез-газа с получением чистого синтез-газа, а затем СО2 абсорбируют водным раствором NaOH, полученным на стадии 2); 4) вдувание Н2, полученного на стадии 2), в чистый синтез-газ с целью регулирования молярного отношения СО/Н2 в чистом синтез-газе так, чтобы оно удовлетворяло требованиям реакции синтеза Фишера-Тропша, и затем осуществляют производство соответствующих жидких углеводородов и парафиновых продуктов. Заявлены варианты устройств проведения синтеза Фишера-Тропша. Технический результат – снижение сложности и стоимости процесса конверсии водяного пара, используемого в процессе, уменьшение выбросов углекислого газа. 3 н. и 12 з.п. ф-лы, 2 ил., 6 пр.

Изобретение относится к области нанокатализатора для синтеза Фишера-Тропша. Описан нанокатализатор из монодисперсного переходного металла для синтеза Фишера-Тропша, включающий переходный металл и органический растворитель, где переходный металл устойчиво диспергирован в органическом растворителе в виде монодисперсных наночастиц; переходным металлом является марганец, железо, кобальт, рутений или смесь из них; переходный металл имеет размер зерна в пределах 1-100 нм; органическим растворителем является бензиловый эфир, ароматический спирт, пирролидон или жидкий парафин; и катализатор имеет удельную площадь поверхности в пределах 5-300 м2/г, причем указанный катализатор получен способом, включающим: (1) растворение органической соли указанного переходного металла в указанном органическом растворителе, содержащем многоатомный спирт, с получением смеси; и (2) нагревание и перемешивание смеси в присутствии воздуха или инертного газа, выдержку смеси при температуре в диапазоне 150-250°C в течение 30-240 мин с получением указанного нанокатализатора из монодисперсного переходного металла для синтеза Фишера-Тропша. Технический результат – высокая каталитическая активность катализатора, при этом размер зерна активного металла является управляемым. 3 н. и 5 з.п. ф-лы, 1 табл., 4 пр., 1 ил.

Изобретение относится к технологии обработки в печи каталитического окисления, а именно к способу интерактивной сушки адиабатической печи каталитического окисления природного газа. Способ включает: 1) загрузку исходного газа, содержащего кислород и природный газ, а также терморегулирующего газа, способного уменьшать скорость увеличения температуры реакции в печи каталитического окисления природного газа, загруженнго катализатором; 2) подогрев смешанного газа, содержащего исходный газ и терморегулирующий газ, для плавного повышения температуры смешанного газа, и остановку подогрева, когда температура смешанного газа достигнет температуры запуска реакции окисления; и 3) в соответствии с молярным отношением, постепенное уменьшение молярного отношения терморегулирующего газа к исходному газу так, чтобы повышение температуры смешанного газа соответствовало скорости повышения температуры кривой высыхания термоизоляционного огнеупорного материала в печи каталитического окисления природного газа, и прекращение подачи терморегулирующего газа. Технический результат заключается в предотвращении растрескивания термоизолирующего огнеупорного материала. 7 з.п. ф-лы, 7 ил., 1 табл., 6 пр.

Изобретение относится к способу сушки топлива из биомассы и мобильному платформенному устройству для сушки топлива из биомассы. Для его осуществления используют мобильную платформу на транспортном средстве для разделения основных процессов на производственной линии для сушки топлива из биомассы в стационарной установке так, что основные процессы выполняются в нескольких независимо транспортируемых функциональных транспортных средствах. Способ содержит следующие этапы: 1) предварительную обработку сырьевого материала; 2) загрузку предварительно обработанных продуктов в транспортные средства; 3) соединение функциональных транспортных средств, имеющих связанные функции; 4) конвективную сушку при высокой температуре; 5) излучающую сушку при низком положительном давлении и низкой температуре; 6) последующее повторение цикла; 7) транспортировку высушенного топлива. Функциональные транспортные средства содержат по меньшей мере одно транспортное средство (1) с сушильным устройством и несколько транспортирующих топливо транспортных средств (3). Подвижная перемещающаяся сушильная камера (4) расположена на транспортном средстве (1) с сушильным устройством, и несколько фургонов (3-1) для загрузки топливом расположены на транспортирующем топливо транспортном средстве (3). Перемещающаяся сушильная камера (4) может быстро перемещаться на транспортирующее топливо транспортное средство (3), загруженное топливом, которое должно быть высушено, и быстро покидать, после того как сушка завершается, таким образом уменьшая инвестиции для устройств и энергии и экономя затраты. 2 н. и 19 з.п. ф-лы, 12 ил.

Изобретение относится к способу и устройству для использования избыточного тепла от топочного газа электростанции для высушивания топлива из биомассы. Способ включает следующие стадии: 1) постепенное использование избыточного тепла от топочного газа; 2) высокотемпературное быстрое высушивание горячим воздухом первой ступени; 3) среднетемпературное высушивание при постоянной скорости горячим воздухом второй ступени; 4) низкотемпературное ускоренное высушивание третьей ступени. Устройство включает многослойную ленточную сушилку (1) и систему постепенной утилизации тепла и теплообмена для избыточного тепла от топочного газа. Способ и устройство обеспечивают утилизацию избыточного тепла топочного газа, повышение эффективности высушивания, сбережения энергии и сокращения выбросов. 2 н. и 8 з.п. ф-лы, 4 ил.

Настоящее изобретение относится к технологии использования солнечной энергии и, более конкретно, к солнечной теплосборной адсорбционной композиционной трубке, солнечному теплосборному адсорбционному композиционному слою, состоящему из таких трубок, и охлаждающей и нагревательной системе, образованной из такого слоя. Солнечная теплосборная адсорбционная композиционная трубка включает солнечную вакуумную трубку, имеющую два открытых торца; наружную металлическую трубку и внутреннюю металлическую трубку, коаксиально расположенные внутри солнечной вакуумной трубки; причем между наружной металлической трубкой и солнечной вакуумной трубкой образован водный тракт; между наружной металлической трубкой и внутренней металлической трубкой находится твердый адсорбент для теплообмена с водой снаружи наружной металлической трубки; множество сквозных отверстий расположены на внутренней металлической трубке; адсорбат расположен во внутренней металлической трубке; и адсорбат и адсорбент образуют рабочую пару для адсорбции и десорбции для осуществления тепловыделения и теплопоглощения. Система, содержащая такую трубку, функционирует в обоих режимах, включая охлаждение и нагревание, и предназначается для использования единицы теплосборной площади, чтобы осуществлять нагревание воды в дневное время и охлаждение воды в ночное время или непрерывное круглосуточное охлаждение и нагревание. 3 н. и 4 з.п. ф-лы, 3 ил.

Структурированный катализатор на основе железа для производства α-олефина из синтез-газа на неподвижном слое или в суспензионном слое, способ его изготовления и применение. Катализатор на основе железа в форме сферических частиц содержит между 50,0 и 99,8 % по массе железа, между 0 и 5,0 % по массе первой добавки; при этом данная первая добавка является переходным металлом: медью, кобальтом, цинком или хромом, или первая добавка является оксидом указанного переходного металла; между 0 и 10 % по массе второй добавки; при этом данная вторая добавка является оксидом лантана, оксидом церия, оксидом алюминия, оксидом калия, оксидом марганца или оксидом циркония; и остаток является носителем; данный носитель является диоксидом кремния, и вторая добавка адаптирована к поглощению монодисперсными частицами. Железо, первая добавка и носитель являются монодисперсными частицами, полученными при применении способа термического разложения, включающего смешивание нитрата железа с удаленной кристаллизационной водой, нитрата первой добавки и аморфного диоксида кремния с н-октанолом, чтобы образовать смешанный раствор; где общее массовое процентное содержание нитрата железа, нитрата первой добавки и аморфного диоксида кремния в смешанном растворе находится между 3% и 20%; перемешивание смешанного раствора таким образом, чтобы нитрат был растворен, и нагревание смешанного раствора до температуры между 140 и 180°C; поддержание постоянной температуры в течение 4 ч; охлаждение и фильтрование смешанного раствора, чтобы получить смесь; сушку указанной смеси, чтобы получить черное твердотельное вещество; измельчение черного твердотельного вещества в течение от 20 до 40 мин при применении планетарной мельницы с последующим обжигом черного твердотельного вещества в муфельной печи в течение 5 ч при температуре между 400 и 600°C, чтобы получить предшественник A катализатора. Для получения катализатора вторую добавку растворяют в воде или этиловом спирте, чтобы образовать раствор второй добавки. Далее способ включает сухое импрегнирование предшественника A катализатора в растворе второй добавки и выдерживание в течение времени между 12 и 24 ч, чтобы образовать вторую смесь; сушку второй смеси при температуре между 100 и 130°C и обжиг второй смеси в течение от 4 до 10 ч при температуре между 300 и 1200°C и прессование второй смеси в виде таблеток и отсеивание, чтобы получить структурированный катализатор на основе железа. Технический результат - высокая селективность катализатора в отношении α-олефина. 4 н. и 6 з.п. ф-лы, 1 ил, 2 табл., 10 пр.

Изобретение относится к энергетике. Оптимизированная комплексная система для гибридного генерирования электроэнергии с использованием солнечной энергии и биомассы содержит масляный теплоноситель, выходящий из солнечной электростанции системы гелиотермического котла. Теплоноситель последовательно протекает через гелиотермический испаритель и гелиотермический нагреватель, а затем обратно в сборник масляного теплоносителя, после чего передается в циркуляционный маслонасос на солнечную электростанцию для завершения циркуляции масляного теплоносителя. Пар, полученный с помощью гелиотермической энергии посредством гелиотермического испарителя, подается в систему котла на биомассе через парораспределительный коллектор. Вспомогательный пар, вырабатываемый вспомогательным котлом, работающим на угле, газе или мазуте также смешивается с паром, полученным с помощью гелиотермической энергии, и подается в систему котла на биомассе через парораспределительный коллектор. Пар, полученный с помощью гелиотермической энергии, и пар, полученный посредством самого котла на биомассе, подаются в турбогенератор для вовлечения электрического генератора в генерирование электроэнергии. Изобретение позволяет упростить конфигурацию системы и оборудования, обеспечить стабильное генерирование электроэнергии, высокий тепловой кпд и продленный срок службы. 10 з.п. ф-лы, 1 ил.

Изобретение относится к технологии сушки с использованием солнечной энергии, более конкретно к комплексной системе сушки на солнечной энергии, выполненной с возможностью сбора тепла, аккумулирования тепла и подачи тепла. Система содержит гелиотеплицу, стеллаж (1) для аккумулирования тепла солнечной энергии, воздушный конденсатор (3), мокрый пылеуловитель (4) и трубки, и клапаны (9.1 - 9.12), соединяющие каждое устройство, и воздуходувки (2.1-2.3). Гелиотеплица представляет собой каркасную конструкцию, имеющую пол из перфорированных цементных плит (7). Стеллаж (1) для аккумулирования тепла солнечной энергии содержит верхнюю и нижнюю воздушные камеры (1.1), ряд трубок (1.3) для сбора и аккумулирования солнечной энергии и герметичную камеру. Воздушный конденсатор (3) представляет собой цилиндрическую конструкцию, стороны которой снабжены отверстиями для притока и оттока воздуха, и верхнее, и нижнее отверстия которого снабжены воздушными камерами (3.1), соединенными между собой воздушными трубками (3.2). Канал притока воздуха предусмотрен под полом гелиотеплицы, а два канала оттока воздуха предусмотрены выше пола. Нижняя воздушная камера воздушного конденсатора (3) соединена с мокрым пылеуловителем (4). Изобретение должно обеспечить высокие тепловую эффективность и скорость сушки. 8 з.п. ф-лы, 6 ил.

 


Наверх