Патенты автора Козаченко Михаил Леонидович (RU)

Изобретение относится к области оптических измерений, а именно к энергетической фотометрии, и может быть использовано для дискретных измерений больших уровней мощности широких пучков лазерного излучения. Измеритель мощности лазерного излучения содержит медный стержневой приемный элемент, поглощающий энергию лазерного излучения, расположенный внутри него термочувствительный элемент - термометр сопротивления - и блок перемещения стержневого приемного элемента вдоль сечения пучка. В стержневом приемном элементе выполнено два продольных канала, в одном из которых расположен электронагреватель, а в другом - указанный термочувствительный элемент. Канал электронагревателя расположен со стороны поверхности стержневого элемента, обращенной к источнику лазерного излучения, а канал термочувствительного элемента - с теневой стороны. Высота приемного элемента превышает диаметр пучка, а блок перемещения обеспечивает его движение с постоянной скоростью через сечение пучка. Технический результат - повышение точности проводимых измерений. 9 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, а именно к устройствам для измерения коэффициента поглощения образца, и может быть использовано в ходе исследования оптических характеристик материалов и покрытий, в том числе отражательной и поглощательной способности, их зависимости от угла падения излучения, зоны облучения, фактуры поверхности и т.д. Устройство измерения коэффициента поглощения образца содержит источник лазерного излучения, делительную пластину, контрольный приемник излучения и измерительную термобатарею с держателем образца и термостатом. Внутри термостата расположен волоконно-оптический канал, с одной стороны подведенный к полусферической зеркальной полости, выполненной на обращенном к образцу торце термостата, а с другой - к калибровочному источнику излучения. Технический результат - повышение точности проводимых измерений, в том числе по абсолютному значению. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетической фотометрии и касается способа формирования лазерного излучения эталонной мощности. Способ включает в себя ослабление мощности лазерного излучения от выбранного источника с помощью основного вращающегося механического ослабителя из поглощающего материала с угловой прорезью, измерение полученной мощности Рэ с помощью эталонного приемника, расчет эталонной мощности Рм лазерного излучения и формирование лазерного излучения эталонной мощности Рм. При формировании лазерного излучения эталонной мощности используют вспомогательный вращающийся механический ослабитель в виде углового фрагмента, по форме повторяющий указанную угловую прорезь. Эталонную мощность сформированного лазерного излучения рассчитывают как Рм=Рэ⋅Ко/Кв, где Ко - коэффициент ослабления основного ослабителя, а Кв - вспомогательного. Технический результат заключается в повышении точности воспроизведения эталонной мощности. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области оптических измерений, а именно к энергетической фотометрии, и может быть использовано для проведения измерений больших уровней средней мощности коллимированного лазерного излучения. Измеритель мощности лазерного излучения содержит поглощающую полость с входным окном, снабженную водяной рубашкой с дифференциальной термобатареей, калибровочным электронагревателем и конусным отражателем на дне полости напротив входного окна. Полость образована двумя соосными цилиндрическими частями большего и меньшего диаметров и в осевом сечении имеет Т-образный профиль. Входное окно выполнено в передней стенке части меньшего диаметра, а конусный отражатель установлен на задней стенке части большего диаметра. Технический результат - повышение допустимого уровня мощности (в том числе, плотности мощности) измеряемого лазерного излучения. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области оптических измерений, а именно к энергетической фотометрии, и может быть использовано в составе эталонной техники для метрологического обеспечения высокоточной поверки средств измерений средней мощности коллимированного лазерного излучения. Световод выполнен в виде полой трубки с отражающей внутренней и внешней поверхностями. На одном конце трубка снабжена диафрагмирующим радиатором охлаждения, отсекающим периферический световой поток, не попавший в полость трубки. На противоположном торце трубки снаружи выполнена заостряющая фаска. Эталонная установка для воспроизведения и передачи единицы мощности коллимированного лазерного излучения содержит поглотитель и фотометрическую сферу, соосно размещенную перед входным окном поглотителя таким образом, чтобы исключить их механический и тепловой контакт. Выходной проём фотометрической сферы полностью перекрывает входное окно поглотителя. Установка снабжена указанным световодом, установленным во входном проёме фотометрической сферы по скользящей посадке. При этом радиатор охлаждения расположен снаружи входного проёма фотометрической сферы, а трубка проходит вдоль её диаметра так, что её свободный торец расположен в выходном проёме фотометрической сферы. Технический результат - повышение точности воспроизведения и передачи единицы мощности коллимированного лазерного излучения. 2 н. и 17 з.п. ф-лы, 2 ил.

Изобретение относится к области энергетической фотометрии и может быть использовано при калибровке средств ее измерений. Устройство включает непрерывный лазерный излучатель, каскад диафрагм и эталонный преобразователь. Эталонный преобразователь содержит термостат и идентичные рабочий и компенсационный полостные приемные элементы. Каждый приемный элемент включает теплопровод и чувствительный элемент. Длина теплопровода превышает длину его полуокружности. Чувствительный элемент расположен на переднем торце теплопровода. Передний торец теплопровода закреплен в термостате. Остальная часть теплопровода размещена в термостате и отделена от него воздушным зазором. На заднем торце теплопровода установлен тепловой экран, имеющий тепловой контакт с теплопроводом. Теплопровод выполнен в виде полого сквозного цилиндра. Внутри полости теплопровода скомпонованы непрерывный лазерный излучатель, объектив и диафрагмы. Непрерывный лазерный излучатель установлен в заднем торце теплопровода и выполнен с возможностью использования в качестве калибровочного электрического нагревателя. Технический результат заключается в обеспечении возможности уменьшения количества входящих в его состав элементов при сохранении их функций и в повышении производительности его работы. 15 з.п. ф-лы, 2 ил.

 


Наверх