Патенты автора Копылов Филипп Юрьевич (RU)

Изобретение относится к области медицины, а именно онкологии, и может быть использовано для скринингового определения вероятности наличия рака мочевого пузыря (РМП) у пациентов европеоидной популяции. Измеряют уровень биомаркеров в образце биологической жидкости, полученном у субъекта: sVCAM.1, ApoA1, СА19.9, АроА2, CYFRA.21.1, Ddimer, АроВ, hsCRP, TTR, В2М. Определяют пол пациента. Обрабатывают совокупность полученных значений биомаркеров с использованием, по меньшей мере, одной классификационной модели, обученной для определения высокой или низкой вероятности наличия рака мочевого пузыря. Способ обеспечивает повышение точности скринингового выявления наличия рака у пациентов европеоидной популяции за счёт применения классификационной модели, обученной для определения высокой или низкой вероятности наличия РМП. 3 з.п. ф-лы, 9 ил., 5 табл.

Изобретение относится к области медицины, а именно онкологии, и может быть использовано для скринингового определения вероятности наличия рака молочной железы (РМЖ) у пациенток европеоидной популяции. Измеряют уровень биомаркеров в образце биологической жидкости, полученном у субъекта: CYFRA.21.1, АроА2, Ddimer, НЕ4, В2М, ApoA1, sVCAM.1, СА125, СА15.3, TTR, hsCRP, CEA. Обрабатывают совокупность полученных значений биомаркеров с использованием по меньшей мере одной классификационной модели, обученной для определения высокой или низкой вероятности наличия РМЖ. Способ обеспечивает повышение точности скринингового выявления наличия рака у пациенток европеоидной популяции за счет применения классификационной модели, обученной для определения высокой или низкой вероятности наличия РМЖ. 3 з.п. ф-лы, 9 ил., 4 табл.

Изобретение относится к области медицины, а именно онкологии, и может быть использовано для скринингового определения вероятности наличия колоректального рака. Предложен способ, включающий измерение уровня биомаркеров в образце биологической жидкости, полученном у субъекта: АроА2, В2М, CYFRA.21.1, Ddimer, НЕ4, hsCRP, TTR, СЕА, sVCAM.1, ApoA1, CA19.9, CA125, с последующей обработкой совокупности полученных значений биомаркеров с использованием, по меньшей мере, одной классификационной модели, обученной для определения высокой или низкой вероятности наличия колоректального рака. Изобретение обеспечивает повышение точности способа определения вероятности наличия колоректального рака в европейской популяции. 3 з.п. ф-лы, 9 ил., 4 табл., 1 пр.

Изобретение относится к области медицины, а именно онкологии, и может быть использовано для скринингового определения вероятности наличия рака легкого или выявления данного онкологического заболевания на ранней стадии. Предложен способ, включающий измерение уровня биомаркеров в образце биологической жидкости, полученном у субъекта: НЕ4, АроА2, CYFRA.21.1, Ddimer, ApoA1, TTR, В2М, СА125, hsCRP, CEA, sVCAM.1, CA15.3, а также определение пола пациента с последующей обработкой совокупности полученных значений биомаркеров с использованием, по меньшей мере, одной классификационной модели, обученной для определения высокой или низкой вероятности наличия рака легкого. Изобретение обеспечивает повышение точности скринингового выявления наличия рака у конкретного пациента европеоидной популяции, причем уже на ранних стадиях его развития посредством выявления и учета оригинальной совокупности биомаркеров по итогам анализа фракции сыворотки или плазмы крови при ускорении диагностируемых состояний. 3 з.п. ф-лы, 10 ил., 4 табл., 1 пр.

Изобретение относится к оптическим сенсорам и может быть использовано для детектирования различных веществ или иных наноразмерных объектов и определения концентрации веществ в очень малых количествах молекул с использованием комбинационного рассеяния света. Устройство усиления комбинационного рассеяния света включает: твердую многослойную наноструктуру, содержащую подложку произвольной толщины с гладкой поверхностью, отражающий слой, первый оптически прозрачный слой, SERS-активный слой, выполненный из массива наночастиц, второй оптически прозрачный слой, расположенный поверх SERS-активного слоя, и второй SERS-активный слой, отделенный от первого SERS-активного слоя вторым оптически прозрачным слоем. Второй SERS-активный слой выполнен из массива наночастиц со средним размером, равным или меньше, чем у первого SERS-активного слоя. Технический результат изобретения заключается в повышении чувствительности SERS-подложки и расширении номенклатуры изучаемых веществ. 10 з.п. ф-лы, 2 ил.

Изобретение относится к медицине, в частности к кардиологии, и может быть использовано как электрокардиографический скрининговый способ диагностики эпизодов ишемии миокарда как проявления ишемической болезни сердца (ИБС). Способ заключается в том, что по методике нагрузочного теста осуществляют дозированное увеличение физической нагрузки, контроль АД, ЧСС, METS, регистрацию электрокардиосигналов (ЭКС), предварительную обработку ЭКС с определением смещения ST-сегмента, отличающийся тем, что дополнительно осуществляют: определение антропометрических параметров торса пациента путем измерения ширины 2а и толщины 2b торса; определение координат электродов по формулам х=rsin(ϕ); у=-rcos(ϕ), где r - расстояние от центра поперечного сечения торса до электрода, определяется по формуле ϕ - угол между прямой, соединяющей подмышечные впадины, и направлением на текущий электрод; синхронное накопление кардиоциклов ЭКС электродных отведений на временном интервале максимума физической нагрузки по формуле , где Nk - количество кардиоциклов на интервале максимума физической нагрузки, j - номер кардиоцикла, i - номер временного отсчета кардиоцикла; tj - момент достижения максимума R-зубца j-го кардиоцикла, ƒs - частота оцифровки ЭКС; - реконструкцию ЭЭГС дипольного типа, т.е. поиск координат и проекций вектора дипольного момента ЭЭГС дипольного типа для всех временных отсчетов кардиоцикла ti путем поиска минимума функционала где usn - ЭКС, снимаемый с n-го электрода; NE - количество электродов; ugn - сигнал ЭЭГС дипольного типа, рассчитанный для n-го электрода; (xg, yg, zg) - координаты ЭЭГС, (Мх, Му, Mz) - проекции вектора дипольного момента; расчет коэффициента изменения электрической активности на ST-T сегменте путем: определения MST, модуля вектора дипольного момента в центре ST сегмента; определения Mmax, модуля вектора дипольного момента для вершины Т зубца; определение β, коэффициента изменения электрической активности на ST-T сегменте по формуле , - принятие решения о положительном или отрицательном результате нагрузочного теста по формуле , где VJA - смещение ST-сегмента, решение d=+1 означает положительный результат теста - наличие ИБС, d=-1 означает отрицательный результат теста - отсутствие ИБС; VJA thresh ≈ -0,1 мВ и βthresh ∈ (2,5; 3,5) - опционально задаваемые пороговые значения параметров, которые влияют на чувствительность и специфичность результатов диагностики. Изобретение обеспечивает повышение надежности диагностики ИБС при скрининговом обследовании с помощью нагрузочного ЭКГ теста. 10 ил.

Изобретение относится к области медицины, в частности к кардиологии. Осуществляют автоматический съем сигнала электрокардиограммы пациента. Проводят его оцифровку и регистрацию, выделение кардиоциклов, определение амплитуд и длительностей основных зубцов, сегментов и интервалов сигнала. Вычисляют коэффициенты непрерывного вейвлет-преобразования. При этом для каждого кардиоцикла определяют его локальные точки экстремума нулевых изолиний поверхности, образованной коэффициентами вейвлет-преобразования рассматриваемого кардиоцикла, и присваивают им индексы характеристического шифра путем указания соответствующих им букв над горизонтальной чертой, если это точка максимум, и под чертой - в случае минимума, и указывают их взаимосвязи между собой посредством добавления индекса, указывающего на точку экстремума, в случае наличия взаимосвязи посредством нулевой изолинии между точками экстремума и отсутствия индекса в противном случае. Выбор основных изолиний и определение топологических свойств их структуры осуществляют с использованием результатов амплитудно-временного анализа кардиоцикла, переход из одной электрокардиографической стадии в динамике миокарда в другую устанавливают по смене характеристического шифра кардиоцикла со временем при регистрации изменений в анализируемой электрокардиограмме. Способ позволяет в автоматическом режиме отслеживать стадии в динамике изменений функционального состояния миокарда. 12 з.п. ф-лы, 11 ил.

 


Наверх