Патенты автора ИЛЬМАЗ Бильге (US)

Описаны композиции крекинга с флюидизированным катализатором (ФКК), способы производства и их применение. Каталитическая композиция крекинга с флюидизированным катализатором (ФКК) для крекинга углеводородов включает нецеолитный матричный компонент, оксид бора, пропитывающий матрицу, и крекирующие частицы, где нецеолитный матричный компонент включает алюмосиликат и крекирующие частицы включают цеолит и нецеолитный компонент. Каталитическая композиция ФКК способствует уменьшению выработки кокса и водорода во время крекинга металлсодержащего сырья ФКК, по сравнению с каталитической композицией ФКК без оксида бора, пропитывающего нецеолитную матрицу и крекирующие частицы, которые включают цеолит и нецеолитный компонент. Оксид бора пассивирует сырье ФКК, имеющее высокое содержание металлов во время ФКК. Каталитические композиции ФКК могут быть применены для крегинга углеводородного сырья, особенно сырья остатков вакуумной перегонки, содержащего высокие уровни V и Ni, что приводит к меньшим выходам водорода и кокса. 3 н. и 13 з.п. ф-лы, 1 табл., 4 пр.

Описаны каталитические композиции крекинга с флюидизированным катализатором (ФКК), способы крекинга. Каталитическая композиция включает первый тип частиц, включающих один или несколько компонентов с оксидом бора, и компонент первой матрицы, где первый тип частиц не включает цеолит, и второй тип частиц, который имеет композицию, отличающуюся от первого типа частиц, второй тип частиц включает компонент второй матрицы, компонент фосфора и 20% - 95 мас. % в пересчете на каталитическую композицию цеолитного компонента, где первый тип частиц и второй тип частиц смешаны вместе. Каталитические композиции ФКК могут быть применены для крекинга углеводородного сырья, особенно сырья остатков вакуумной перегонки, содержащего высокие уровни V и Ni, что приводит к меньшим выходам водорода и кокса. 3 н. и 12 з.п. ф-лы, 4 пр.

Изобретение относится к способу производства катализатора для крекинга с флюидизированным катализатором (ФКК). Способ включает следующие стадии: предварительное формирование предшествующей микросферы, включающей нецеолитный материал, содержащий бемит и переходный оксид алюминия; кристаллизацию in situ цеолита Y на предварительно сформированной микросфере, чтобы обеспечить микросферу, содержащую цеолит; добавление первой части компонента фосфора к микросфере, содержащей цеолит с образованием микросферы, модифицированной первым фосфором; добавление редкоземельного компонента к микросфере, модифицированной первым фосфором, чтобы обеспечить микросферу, содержащую редкоземельный элемент; и добавление второй части компонента фосфора к предшествующей микросфере, содержащей редкоземельный элемент, чтобы обеспечить каталитическую микросферу. Полученный катализатор ФКК содержит 5-25 мас. % переходного оксида алюминия, 20-65 мас. % цеолита Y, и 1-5 мас. % компонента фосфора на оксидной основе; и цеолит врощен в нецеолитный компонент. Катализатор может быть применен, чтобы крекировать углеводородное сырье, особенно сырье остатков вакуумной перегонки, содержащее высокий уровень V и Ni, приводя к более низким выходам водорода и кокса. 5 з.п. ф-лы, 4 ил., 2 табл., 9 пр.

Предложены способ модификации цеолитного катализатора флюид-каталитического крекинга фосфором и модифицированный катализатор, полученный указанным способом. Способ модификации цеолитного катализатора Y-типа фосфором включает: обмен между кристаллизованным катализатором и аммониевой солью с целью обеспечить содержание в катализаторе оксида натрия, меньшее чем около 2 мас.% Na2O, обработку аммоний обмененного катализатора первым фосфатным раствором, достаточную для того, чтобы добавить от 0,5 до 2 мас.% Р2О5 в катализатор, аммониевый ионный обмен обработанного фосфором катализатора с возможностью получения катализатора с низким содержанием оксида натрия, которое составляет менее чем около 0,5 мас.% Na2O, обработку катализатора с низким содержанием оксида натрия вторым фосфатным раствором, достаточную для того, чтобы обеспечить содержание Р2О5 в катализаторе в количестве 2-4 мас.%, и ионный обмен катализатора на редкоземельные катионы, следующий за первым аммониевым ионным обменом или за первой обработкой фосфором с возможностью включения от 0,5 до 10 мас.% редкоземельных элементов в виде оксидов редкоземельных элементов в состав указанного катализатора, где после редкоземельного обмена катализатор кальцинируют в таких условиях кальцинации, при которых размер элементарной ячейки цеолита Y-типа значительно не уменьшается и где указанную кальцинацию проводят в отсутствие добавочного пара. Технический результат – высокая гидротермическая стабильность и активность катализатора. 2 н. и 4 з.п. ф-лы, 4 табл., 7 пр.

 


Наверх