Патенты автора Тетельбаум Давид Исаакович (RU)

Изобретение относится к полупроводниковой технологии и может быть использовано при изготовлении светоизлучающих приборов на основе гексагональной фазы кремния, обеспечивающей эффективное возбуждение фотолюминесценции. Технический результат от использования предлагаемого способа формирования гексагональной фазы кремния - повышение эффективности формирования указанной фазы за счет повышения технологичности указанного формирования в результате его упрощения. Для достижения указанного технического результата в способе формирования фазы гексагонального кремния, включающем получение на поверхности пластины, изготовленной из алмазоподобного монокристаллического кремния, пленки оксида кремния, имплантацию в нее ионов, имеющих атомный радиус, превышающий атомные радиусы элементов, входящих в состав этой пленки, и вызывающих в указанной пленке и прилегающем к ней подповерхностном слое пластины повышенные механические напряжения, достаточные для преобразования алмазоподобной фазы монокристаллического кремния в его гексагональную фазу, и постимплантационный отжиг, в упомянутую пленку оксида кремния производят имплантацию ионов криптона, причем толщину получаемой пленки оксида кремния и энергию и дозу ионов криптона выбирают из интервалов величин толщины пленки оксида кремния от 50 до 150 нм, энергии ионов криптона от 40 до 80 кэВ и дозы ионов криптона от 1⋅1016 до 1⋅1017 см-2 при условии обеспечения при этом максимальной концентрации ионов криптона в пленке оксида кремния на глубине, составляющей 40-60% от толщины этой пленки. 2 з.п. ф-лы, 1 ил.

Использование: для изготовления мемристоров с диэлектрической структурой. Сущность изобретения заключается в том, что предложен способ изготовления мемристора путем формирования расположенной между двумя электродами диэлектрической структуры, содержащей обеспечивающий филаментарный механизм переключения слой диоксида циркония и обладающей резистивной памятью, работу которой стабилизируют в результате введения в указанную диэлектрическую структуру наноконцентраторов электрического поля, для совмещения введения наноконцентраторов электрического поля с процессом формирования упомянутой диэлектрической структуры и усиления в ней при резистивном переключении потока ионов кислорода на поверхности одного из электродов, изготовленного из нитрида титана, последовательно формируют слой оксида тантала и слой диоксида циркония, стабилизированного иттрием, с использованием магнетронного распыления, причем при осаждении на указанный электрод оксида тантала, сопровождаемом частичным замещением атомов азота на атомы кислорода, формируют на поверхности этого электрода промежуточный интерфейсный слой диоксида титана и в участках указанного интерфейсного слоя и осаждаемого слоя оксида тантала, прилежащих к поверхностной границе их раздела, образуемые при этом наноконцентраторы электрического поля в виде нанокристаллических включений тантала. Технический результат: обеспечение возможности оптимального сочетания повышенной технологичности изготовления указанного мемристора и стабилизации работы резистивной памяти мемристора. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области нанотехнологий, а именно к способам ионно-лучевого синтеза нановключений нитрида галлия в кремнии, и может быть использовано при изготовлении устройств опто- и микроэлектроники нового поколения. Способ ионно-лучевого синтеза нитрида галлия в кремниевой пластине включает последовательную основную имплантацию в кремниевую пластину ионов азота и галлия. Сначала обеспечивают синтез слоя нитрида кремния в кремниевой пластине путём предварительной имплантации ионов азота с дозой в интервале 3⋅1016 ат/см2 – 5⋅1017 ат/см2, c энергией ионов азота, обеспечивающей средний проецированный пробег ионов азота меньше среднего проецированного пробега ионов азота и галлия при последовательной основной имплантации, и последующий термический отжиг в инертной атмосфере при температуре 900-1200°С в течение 15-60 мин. Затем проводят последовательную основную имплантацию ионов азота и галлия с дозой в интервале 5⋅1016ат/см2 – 5⋅1017 ат/см2 и последующий термический отжиг в инертной атмосфере при температуре 700-900°С в течение 30-60 мин или при температуре 800-1000°С в режиме быстрого термического отжига. В частных случаях осуществления изобретения последовательную основную имплантацию ионов азота и галлия проводят в прямой или обратной последовательности. После последовательной основной имплантации ионов азота и галлия и последующего термического отжига в инертной атмосфере проводят имплантацию ионов азота с энергией, равной энергии ионов азота при последовательной основной имплантации, с дозой, при которой концентрация ионов азота равна или больше концентрации атомов галлия в элементарном галлии. Обеспечивается повышение эффективности образования включений фазы нитрида галлия за счет уменьшения степени выхода имплантированного Ga из пластины кремния, расширяется арсенал технических средств синтеза нитрида галлия в кремнии с использованием широкодоступного серийного стандартного имплантационного оборудования, хорошо совместимого с технологией обработки кремния. 2 з.п. ф-лы, 5 ил., 1пр.

Использование: для изготовления светоизлучающих приборов на основе гексагональной фазы кремния, обеспечивающей эффективное возбуждение фотолюминесценции. Сущность изобретения заключается в том, что в способе формирования фазы гексагонального кремния путем имплантации в изготовленную из алмазоподобного монокристаллического кремния пластину ионов, имеющих атомный радиус, превышающий атомный радиус кремния, и образующих в результате указанной имплантации в алмазоподобном монокристаллическом кремнии пластины включения, инициирующие возникновение в нем повышенных механических напряжений, создающих энергетические условия преобразования алмазоподобной фазы монокристаллического кремния в его гексагональную фазу, для повышения стабильности возникновения в алмазоподобном монокристаллическом кремнии упомянутой пластины зоны повышенных механических напряжений производят имплантацию ионов азота и галлия через предварительно полученный на поверхности исходной пластины тонкий слой нитрида кремния толщиной, с одной стороны, не препятствующей прохождению сквозь слой имплантируемых ионов галлия и азота, с другой стороны, достаточной при подобранной энергии имплантации для запирания под ним в прилегающем к указанному слою нитрида кремния подповерхностном слое алмазоподобного монокристаллического кремния указанной пластины имплантированных ионов азота и галлия с образованием ими при последующем отжиге пластины в указанном подповерхностном слое включений нитрида галлия, приводящем к стабильному формированию в этом слое гексагональной фазы кремния с повышенным заполнением этого слоя указанной фазой. Технический результат: обеспечение возможности повышения стабильности возникновения зоны повышенных механических напряжений. 1 з.п. ф-лы, 2 ил.

Группа изобретений относится к способам имитационного тестирования изделий микро- и наноэлектроники. На приборную структуру воздействуют эквивалентным облучением ионами с флюенсом от 109 см-2 до 1015 см-2 и энергией в интервале 1-500 кэВ, уточняемыми в зависимости от состава и морфологии структуры, при этом уточняемые величины флюенса и энергии ионов, обеспечивающие эквивалентность, определяют расчетом, путем компьютерного моделирования концентрации и распределения смещенных атомов при облучении ионами в чувствительных областях приборной структуры и сравнения с результатами такого же компьютерного моделирования при облучении быстрыми нейтронами, причем для установления правильности расчета эквивалентного флюенса выбирают флюенс ионного облучения, при котором изменение критериальных параметров превышает порог чувствительности средства контроля критериальных параметров, определяют соответствующий эквивалентный флюенс облучения быстрыми нейтронами, проводят разовое натурное испытание облучением приборной структуры быстрыми нейтронами при эквивалентном флюенсе, сравнивают полученное отклонение критериальных параметров с отклонением при выбранном флюенсе ионного облучения и судят по результату сравнения о правильности расчета эквивалентного флюенса. Технический результат - повышение достоверности результатов испытаний, сокращение времени испытания, использование доступного для исследователей оборудования. 2 н. и 6 з.п. ф-лы, 13 ил., 2 табл.

 


Наверх