Патенты автора Комкова Мария Андреевна (RU)

Изобретение относится к области мембранной технологии и может быть использовано для удаления паров воды и других конденсируемых компонентов из природных и технологических газовых смесей. Изобретение представляет собой способ удаления конденсируемых компонентов из газовых смесей за счет абсорбции паров охлажденным абсорбентом через нанопористую мембрану. Технический результат, достигаемый при использовании заявляемого изобретения, заключается в обеспечении снижения предельно достижимой точки росы осушаемого газа за счет снижения равновесного парциального давления паров над охлаждаемыми растворами абсорбентов более чем на 20°С. Предложенный способ удаления паров с использованием охлажденного абсорбента позволяет уменьшать температуру точки росы подготовленного газа до значений на 10-15°С ниже, чем температура охлажденного абсорбента, и достигать производительности осушения до 12 н⋅м3/(м2(мембраны)⋅ч), что соответствует удельной объемной производительности до 40000 н⋅м3/(м3(аппарата)⋅ч). 9 з.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к области машиностроения, в частности, к устройствам для определения пространственных положений осей отверстий в шарнирных кронштейнах с помощью координатно-измерительной системы на базе лазерного трекера при выполнении монтажных работ сборочной оснастки. Устройство содержит шарнирный кронштейн 2, лазерный трекер 12, измерительный стержень 5, установленный в отверстиях проушин 3, 4 шарнирного кронштейна 2, две магнитные подставки 6, 7, зафиксированные в отверстиях на обоих торцах измерительного стержня 5, со сферическими отражателями 8, 9 лазерного трекера 12, с центрами последних, расположенными на оси О-О шарнирного кронштейна 2, согласно которому, введены элементы соединения - шайба 11, гайка 10 и плоский эталон 1 номинальной толщины Е, который установлен между проушинами 3, 4 шарнирного кронштейна 2, расположенными на номинальном расстоянии соответствующем толщине плоского эталона, и имеющий отверстие, диаметром D, через которое вставлен измерительный стержень 5, на одном конце которого выполнен буртик, а на другом - резьба под гайку 10, при этом плоский эталон 1 и проушины 3, 4 соединены и зафиксированы между собой в один пакет с помощью шайбы 11 и гайки 10, расположенных на резьбовом конце измерительного стержня 5, причем этот пакет установлен в стакане 13 на монтируемом изделии 14 и зафиксирован с помощью цементной массы 15. Технический результат - повышение эффективности устройства для определения пространственного положения оси отверстия в шарнирных кронштейнах путем расширения функциональных возможностей за счет повышения точности. 4 ил.

Изобретение относится к способу и устройству для определения пространственного положения осей отверстий на поверхности измеряемого объекта в заданной системе координат с помощью координатно-измерительной системы, и может быть использовано для контроля криволинейных и прямолинейных авиационных панелей с большим количеством разных по диаметру отверстий, расположенных как в прямой видимости лазерного трекера, так и в ее затененных и труднодоступных местах. Техническим результатом является повышение точности и производительности определения положения осей отверстий. Устройство состоит из калиброванного шара 1, лазерного измерителя, такого как лазерный трекер 6, при этом введен стержень 3 с коническим захватом в его нижней части и магнитная подставка 4 со сферическим отражателем 5, которая установлена и зафиксирована в верхней части стержня 3, а конический захват стержня 3 зафиксирован относительно калиброванного шара 1, установленного в измеряемое отверстие диаметра d, с возможностью вращения стержня 3 с магнитной подставкой 4 и сферическим отражателем 5 относительно центра О калиброванного шара 1, причем центр вращения поверхности полусферы радиусом R, описанной центром сферического отражателя 5, является центром О калиброванного шара 1. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области машиностроения. Позиционирующее устройство для сборочной оснастки включает в себя переходной калибр, прилегающий плотно к установочному элементу сборочной оснастки в виде уха (2), расположенному в цилиндрическом элементе (3), прижимы (7) с пазами, планку (8) с пазом, уголок (9) и струбцину (10). Струбцина (10) выполнена со сквозными резьбовыми отверстиями. Цилиндрический элемент выполнен в виде стакана (3), внешняя поверхность которого сопряжена с внутренней поверхностью основания струбцины (10). На внешней поверхности струбцины (10) выполнены цилиндрические бобышки (13) с резьбовыми отверстиями. На торцах бобышек (13) установлен уголок (9), выполненный из двух полок, на одной из которых выполнены продолговатые дуговые отверстия, при этом поверхность этой полки сопряжена с торцами бобышек (13), а отверстия уголка (9) выполнены с возможностью поворота последнего относительно струбцины (10) на заданный угол, определяемый лазерным трекером координатно-измерительной системы, с одновременным продольным и поперечным перемещениями, а на другой полке уголка 9 выполнен паз для соединения уха (2) с уголком (9). Изобретение позволяет улучшить и упростить сборку. 7 ил.

Изобретение относится к области электроанализа и электрохимических сенсоров и может быть использовано при осуществлении методов лабораторного анализа или медицинской диагностики. Cпособ определения концентрации пероксида водорода в растворе с помощью устройства, содержащего модифицированный Берлинской лазурью измерительный электрод и хлоридсеребряный электрод сравнения, соединенные между собой через амперметр, включает погружение электродов устройства в анализируемый раствор с последующей регистрацией амперметром электрического тока в цепи. По величине тока делают вывод о концентрации пероксида водорода в анализируемом растворе в соответствии с предварительно построенной градуировочной зависимостью. Технический результат, достигаемый при использовании изобретения, заключается в упрощении системы регистрации сигнала (био)сенсоров без снижения их коэффициента чувствительности, а также увеличении соотношения сигнал/шум. 1 з.п. ф-лы, 1 табл., 2 пр., 4 ил.

Изобретение относится к области мембранного газоразделения и может быть использовано для удаления нежелательных компонентов природных и технологических газовых смесей. Устройство мембранного контактора для очистки природных и технологических газов от кислых компонентов посредством абсорбции через нанопористую мембрану, включающее мембранный модуль, подключенный входами и выходами к линиям подачи и сброса газовой и жидкой фаз, содержащий один или несколько размещенных в горизонтальной плоскости и соединенных параллельно контакторных элементов, с газоплотно установленной в каждом элементе нанопористой мембраной, имеющей средний диаметр пор в диапазоне 5-500 нм и распределение пор по размерам, не превышающее 100%, установленной в модуле с обеспечением возможности подачи очищаемой газовой фазы внутрь контакторного элемента, обеспечением контакта мембраны с газовой фазой с одной стороны мембраны и с жидкой фазой абсорбента с противоположной стороны и возможностью обтекания мембраны потоком абсорбента с числом Рейнольдса более 100, при этом плотность упаковки мембраны в контакторном элементе составляет не менее 20 об.%; емкость уравнивания давления, соединенную с мембранным модулем газовой и жидкостной линиями с обеспечением возможности контакта жидкой и газовой фаз, а также регулирования перепада давления между газовой фазой и жидкой фазой абсорбента в контакторном элементе в диапазоне, не превышающем давление смачивания мембраны, с одной стороны, и давление проскока пузырька газа в жидкость, с другой стороны, для предотвращения попадания газа в жидкую фазу абсорбента и жидкой фазы абсорбента в газовую фазу. Технический результат - повышение производительности мембранного контактора при обеспечении высокой степени очистки газа и уменьшении его габаритных размеров. 15 з.п. ф-лы, 5 табл., 6 ил.

Группа изобретений относится к области машиностроения. Способ определения координат центра отверстия и его реализация соответствующим устройством заключается в определении координат центра сферического отражателя лазерного измерителя не менее чем по трем точкам дуги окружности, по которым вычисляют координаты центра дуги окружности. В качестве измерителя используют лазерный трекер координатно-измерительной системы, луч которого направляют в центр сферического отражателя, причем последний устанавливают и фиксируют в плоскости основания измеряемого отверстия. Затем отражатель поворачивают на различные углы в плоскости основания измеряемого отверстия, при этом перемещая его по дуге окружности относительно центра измеряемого отверстия, и определяют измерением трекера пространственные координаты трех точек дуги окружности с помощью программного обеспечения координатно-измерительной системы. По полученным точкам строят окружность и определяют пространственные координаты ее центра, являющегося центром отверстия. Технический результат заключается в обеспечении возможности определения координат центра отверстия в затененных, труднодоступных и стесненных местах. 2 н.п. ф-лы, 4 ил.

Группа изобретений относится к области биохимии. Предложен микросенсор и способ для определения концентрации клеток плесневых грибов в водных и воздушных средах, а также способ получения данного микросенсора. Микросенсор содержит размещенную на диэлектрической подложке систему из встречно-штыревых микроэлектродов, где штыревая часть микроэлектродов расположена друг от друга на расстоянии от 1 до 20 микрон и область встречно-штыревой части микроэлектродов модифицирована полимером поли(3-аминофенилборной кислоты). Способ получения микросенсора включает электрополимеризацию мономера 3-аминофенилборной кислоты на встречно-штыревых микроэлектродах. Способ определения концентрации плесневых грибов включает размещение микросенсора в исследуемую водную среду или поток воздушной среды, регистрацию спектров электрохимического импеданса, определение из спектров сопротивления полимера поли(3-аминофенилборной кислоты) и определение количественного содержания плесневых грибов по градуировочной зависимости. Изобретения обеспечивают определение присутствия микроорганизмов с высокой точностью. 3 н. и 1 з.п. ф-лы, 3 ил., 2 пр.

Группа изобретений относится к медицине, а именно диагностическому способу определения концентрации сахаров и гидроксикислот по увеличению проводимости полимерного слоя на поверхности электрода при взаимодействии с указанными структурами, и может быть использовано для анализа биомолекул, а также клеток, имеющих в своем составе структурные фрагменты сахаров или гидроксикислот. Для этого синтезируют полимерный сенсорный слой методом электрохимической полимеризации аминофенилборных кислот на поверхности электрода. Полученное покрытие представляет собой проводящий замещенный полианилин, характеризующийся способностью к увеличению проводимости в результате взаимодействия функциональных заместителей (борнокислых групп) в полимере с гидроксикислотами и сахарами. Определение проводят в электрохимической ячейке с использованием химического сенсора, то есть электрода, модифицированного проводящей полиаминофенилборной кислотой. Увеличение проводимости полимерного покрытия на поверхности электрода в присутствии анализируемого образца является сигналом, который регистрируют методом спектроскопии электрохимического импеданса. Количественное содержание искомого компонента определяют по калибровочной кривой. Группа изобретений обеспечивает точное определение концентрации диолов, полиолов, моно- и полисахаридов, гидроксикислот и гликозилированных биомолекул в модельных растворах, физиологических жидкостях, медицинских препаратах и пищевых объектах. 2 н. и 3 з.п. ф-лы, 3 табл., 3 ил., 4 пр.

 


Наверх