Патенты автора Кирюхин Вячеслав Евгеньевич (RU)

Изобретение относится к области машиностроения, в частности к устройству для управления роботом-манипулятором с силомоментной обратной связью, установленным на подвижной опоре в радиационно-защитной камере и способу управления посредством такого устройства. Устройство содержит рукоятку, кинематически связанную с механическими узлами, обеспечивающими раздельное и одновременное перемещение рукоятки по трем взаимно перпендикулярным направлениям и вращение вокруг трех взаимно перпендикулярных осей, и соединено с роботом-манипулятором через персональный компьютер, обеспечивающий его запуск и контроль. Механические узлы выполнены в виде двух продольных приводов по оси X, одного перпендикулярного привода по оси Y, своими концами расположенного на продольных приводах, и одного вертикального привода по оси Z, своим концом расположенного на перпендикулярном приводе. Продольные, перпендикулярный и вертикальный приводы снабжены шаговыми электродвигателями, а вертикальный привод посредством рычагов дополнительно соединен с тремя серводвигателями, обеспечивающими вращение рукоятки управления вокруг осей X, Y и Z. Изобретение обеспечивает расширение технических возможностей робота-манипулятора. 2 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к сканирующим электронным микроскопам (СЭМ) и предназначено для получения электронно-микроскопического изображения и локального элементного анализа радиоактивного образца в радиационно-защитной камере с визуализацией данных на экране компьютера. Сущность изобретения заключается в том, что устройство получения электронно-микроскопического изображения и локального элементного анализа радиоактивного образца методом электронной микроскопии в радиационно-защитной камере содержит электронный блок, датчик вакуума, спектрометр волновой дисперсии, блок управления и турбомолекулярный насос, оснащенные свинцовыми экранами радиационной защиты от исследуемого радиоактивного образца, размещенного на рабочем столике микроскопа, кроме того, ручка привода блока апертур оснащена двумя электрическими приводами для перемещения апертур по двум взаимно перпендикулярным направлениям в одной плоскости, а ручка привода детектора обратно отраженных электронов оснащена электрическим приводом и зубчатой ременной передачей. Технический результат – расширение функциональных возможностей путем использования СЭМ в радиационно-защитной камере. 1 з.п. ф-лы, 5 ил.

Группа изобретений относится к способу и устройству ультразвуковой очистки изделий и может быть использована для очистки закрытых радиационных источников (ЗРИ) в радиационно-защитной камере. Устройство содержит ванну овальной формы, заполненную технологическим раствором. В плоское дно ванны встроен ультразвуковой излучатель, нагреватели технологического раствора установлены и закреплены с наружной стороны дна на дополнительной пластине. Единичные очищаемые ЗРИ располагают в непроницаемый для жидкости емкости, опущенной в технологический раствор ванны, на который накладываются ультразвуковые колебания. Состав жидкости в емкости может отличаться от состава технологического раствора ванны. Технический результат: упрощение конструкции устройства ультразвуковой очистки ЗРИ и возможность его размещения в радиационно-защитной камере. 2 н. и 2 з.п. ф-лы, 6 ил.

Группа изобретений относится к области защитной техники при работе с источниками ионизирующего излучения (ИИИ), в том числе при их загрузке, транспортирования и выгрузки. Способ загрузки, транспортировки и выгрузка источников ионизирующего излучения (ИИИ) включает загрузку ИИИ в капсулу. Капсулу устанавливают в цанговый держатель. Цанговый держатель с помощью приспособления загрузки - выгрузки устанавливают в защитный контейнер, причем защитный контейнер накрывают крышкой, которую закрепляют прижимом. Имеется также упаковочный комплект загрузки, транспортировки и выгрузки ИИИ. Группа изобретений позволяет упростить технологию загрузки и выгрузки капсулы с ИИИ из упаковочного комплекта, повысить безопасность в случае возникновения аварийных ситуаций. 2 н. и 4 з.п. ф-лы, 9 ил.

Изобретение предназначено для выполнения различных операций по обслуживанию технологических процессов в радиационно-защитной камере. Манипулятор содержит исполнительный механизм, рукоятку управления, пустотелую соединительную штангу, расположенную в шаровой опоре. Рукоятка управления соединена с исполнительным механизмом посредством центрального тросика и жестко соединена с шаром начальным, который посредством четырех периферийных тросиков и талреп-компенсаторов соединен с шаром конечным. Шар конечный жестко через наконечник соединен с исполнительным механизмом, выполненным в виде сменного захвата. Пустотелая соединительная штанга оснащена направляющей втулкой, в которой уложены периферийные тросики. Изобретение обеспечивает упрощение конструкции. 1 з.п. ф-лы, 2 ил.

Изобретение относится к испытательным устройствам и предназначено для контроля в радиационно-защитной камере на прочность соединений испытательного образца: корпуса источника ионизирующего излучения с концевой деталью (тросиком). Машина содержит раму с расположенным в верхней её части захватом в виде зажимных губок для закрепления испытательного образца, каретку с двумя траверсами и двумя толкателями, передвигающуюся пневматическим приводом и с расположенным на одной траверсе цанговым захватом второго конца испытуемого образца. Рама испытательной машины закреплена в радиационно-защитной камере, а на нижней траверсе каретки закреплен датчик контроля усилия, который вторым концом соединен со штоком пневматического привода. Технический результат: возможность применения устройства в радиационно-защитной камере для контроля прочности соединений испытательного образца. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области ядерной техники и может быть использовано при изготовлении источников ионизирующего излучения (ИИИ), предназначенных специально для медицинских целей. Способ сборки ИИИ заключается в заполнении корпуса гамма-излучающими элементами, содержащими гамма-излучающий изотоп. Гамма-излучающие элементы (ГИЭ), выполненные в виде дисков диаметром от 1,5 мм до 4 мм и толщиной 0,1-0,3 мм, россыпью складируют в наклонном бункере, в котором под воздействием вибрации ГИЭ перемещаются в низший угол наклонного бункера. Откуда их посредством вакуумной присоски транспортируют в корпус хранения ГИЭ. Процедуру транспортировки повторяют до тех пор, пока корпус не будет заполнен необходимым количеством ГИЭ, свободное место в корпусе заполняют компенсаторами, после чего корпус закрывают крышкой. Изобретение позволяет снизить трудоемкость загрузки ГИЭ в корпус. 3 з.п. ф-лы, 3 ил.

 


Наверх