Патенты автора Эмиров Руслан Мурадович (RU)

Изобретение относится к области электротехники, а именно к высокоэффективному способу изготовления наноструктурированных полупроводниковых материалов на основе фаз со структурой перовскита, содержащих катионы иттрия, бериллия, бария и меди с различной плотностью, необходимых для терморезисторов с отрицательным температурным коэффициентом сопротивления. Получение наноструктурированных терморезистивных материалов с заданной пористостью и электрическими свойствами при сравнительно низких температурах (менее 920°С) и времени менее 10 часов является техническим результатом изобретения, который достигается путем компактирования микропорошков и их обработки в течение часа при температуре 600-900°С при скорости подъема и охлаждения не выше ~5°С/мин и ~ 3°С/мин соответственно, при количественном соотношении нанопорошков от 40:60 до 60:40, полученных с технологическими замещениями бериллия на барий в соединении YВе2Сu3О7-δ, с последующим прессованием при давлении не менее 100 МПа и спеканием при температуре 900 до 920°С в течение 1÷10 часов. 3 пр., 6 ил.

Изобретение относится к способу изготовления тонкопленочных структур на основе соединений, содержащих катионы висмута и железа на поверхности наноразмерных трубок TiO2 и недодопированного YBa2Cu3O6+х (YBCO), обладающих чувствительными в зависимости от приложенного внешнего постоянного магнитного поля мемристивными свойствами, которые могут быть использованы при создании функциональных устройств электронной техники, в частности при изготовлении элементов с различными принципами записи, хранения и обработки информации, в том числе транзисторов, ячеек памяти нового поколения (сегнетоэлектрической и мемристивной) и резистивных гибридных структур, содержащих сверхпроводящие и сегнетоэлектрические слои. Сущность изобретения заключается в способе изготовления тонкопленочных структур мультиферроиков, а именно соединений со структурой перовскита, содержащих катионы висмута и железа, на поверхности наноразмерных трубок TiO2 и недодопированного YBa2Cu3O6+x (YBCO), обладающих мемристивными свойствами, чувствительными к внешнему постоянному магнитному полю, методом атомно-слоевого осаждения, заключающимся в послойном нанесении металлоорганических прекурсоров на основе висмута и железа, и последующей термообработкой в течение не более 1 ч при температурах менее 600°С. Технический результат заключается в получении пленок, обладающих мемристивными свойствами, чувствительными к приложенному внешнему постоянному магнитному полю, путем послойного нанесения металлоорганических прекурсоров на основе висмута и железа, и последующей термообработке в течение не более 1 ч и при температурах менее 600°С. 7 ил.

Изобретение относится к тонкопленочной технологии получения мультиферроиков, а именно к получению наноразмерных пленок феррита висмута, которые обладают свойствами мультиферроика при комнатной температуре, и может быть использовано в производстве устройств записи, хранения и обработки информации, в том числе устройств спинтроники. Сущность способа включает получение пленки феррита висмута на поверхности r-плоскости сапфировой подложки методом молекулярного наслаивания с использованием металлоорганических соединений висмутсодержащего и железосодержащего прекурсоров с последующим отжигом в атмосфере воздуха при температуре 630-670°C в течение 1 часа при нормальном атмосферном давлении. Технический результат изобретения заключается в упрощении технологии молекулярного наслаивания наноразмерных эпитаксиальных слоев мультиферроика BiFeO3 и улучшении качества получаемых пленок. 1 пр., 3 ил.

Изобретение относится к получению однофазного нанокристаллического порошка феррита висмута BiFeO3 с ферромагнитными свойствами. Способ включает смешивание нитратов висмута Bi(NO3)3, нитратов железа Fe(NO3)3, глицерина и воды с получением раствора, выпаривание полученного раствора с образованием геля и нагрев его до температуры вспышки с образованием порошка. Упомянутые нитраты висмута и нитраты железа используют в расчетном количестве, необходимом для получения феррита висмута, а глицин - в количестве на 35-50% меньше расчетного количества, при этом выпаривание полученного раствора и нагрев до температуры образуемого геля ведут при непрерывном перемешивании, а полученный после вспышки порошок нагревают до 350-400°C в течение времени до 30 мин. Обеспечивается получение чистого, однородного по дисперсности порошка. 8 ил., 4 пр.

 


Наверх