Патенты автора БЕЛК Джон Х. (US)

Предложены системы и способы получения композиционного материала с керамической матрицей (CMC), содержащего углеродные нанотрубки и графен, который может быть использован в качестве обшивки воздушного судна. Способ получения композиционной структуры с керамической матрицей включает обеспечение смеси углеродных нанотрубок, графена и карбонитрида кремния; нагревание указанной смеси до первой температуры для инициирования образования химических связей между углеродными нанотрубками и графеном в интервале 750-950°С и повышение давления смеси в ходе ее нагревания при второй температуре с обеспечением спекания карбонитрида кремния в смеси при температуре ниже 1000°С. Количество углеродных нанотрубок в смеси составляет от 10 до 30 % по массе, графен содержит нанографеновые пластинки с размером, составляющим от 6 до 8 нм в толщину и от 5 до 25 мкм в ширину, при этом количество графена в смеси составляет от 10 до 30% по массе; карбонитрид кремния содержит порошок с размерами частиц от 0,1 до 1 мкм в диаметре, при этом количество карбонитрида кремния составляет от 60 до 80% по массе. Общая масса углеродных нанотрубок и графена в указанной смеси составляет менее 40% по массе. Технический результат изобретения – получение гибкого легкого материала для воздушного судна, который также может защитить от широкого спектра угроз, связанных с воздействием направленной энергии. 2 н. и 16 з.п. ф-лы, 6 ил.

Изобретение относится к области композиционных материалов, применяемых в воздушно-космических летательных аппаратах, и касается предварительно пропитанного проводящего композитного листа и способа его изготовления. Способ включает этапы соединения содержащего наноматериал композитного листа, армированного волокнами листа и смоляной системы с образованием составного листа, нагрева составного листа, компактирования составного листа и охлаждения составного листа с образованием предварительно пропитанного проводящего композитного листа, содержащего армированный волокнами лист и содержащий наноматериал композитный лист, соединенный с армированным волокнами листом, причем армированный волокнами лист и содержащий наноматериал композитный лист встроены в смоляную систему. Изобретение обеспечивает повышение прочности, уменьшение веса, защиты от удара молнии и/или экранирования авиационного оборудования и электронной аппаратуры от внешних электромагнитных помех, обеспечение длительного срока службы различных компонентов воздушно-летательного аппарата. 3 н. и 16 з.п. ф-лы, 13 ил.

Группа изобретений относится к измерительной технике. Система для измерения механического напряжения содержит оптическое волокно, центральная часть которого закреплена между двумя фиксированными местами. Первый источник света выдает световой сигнал, имеющий первую частоту, а второй источник света выдает второй световой сигнал, имеющий другую вторую частоту. Оба источника света соединены с первым концом оптического волокна. Датчик сигналов обратного рассеяния также соединен с первым концом оптического волокна с возможностью приема отраженного светового сигнала от указанного оптического волокна и с возможностью выдачи выходного сигнала, основанного на указанном принятом отраженном световом сигнале. Датчик сигналов прямого рассеяния соединен со вторым концом оптического волокна с возможностью приема прямого светового сигнала от указанного оптического волокна и с возможностью выдачи сигнала, основанного на указанном принятом прямом световом сигнале. Процессор выполнен с возможностью приема сигналов от датчика сигналов обратного рассеяния и от датчика сигналов прямого рассеяния и с возможностью формирования выходного сигнала, который пропорционален механическому напряжению между двумя фиксированными местами и основан на указанных принятых сигналах. Технический результат заключается в создании измерительной системы на основе оптических волокон для измерения механического напряжения, обеспечивающей сигнал в режиме реального времени. 3 н. и 17 з.п. ф-лы, 3 ил.

Группа изобретений относится к измерительным системам для контроля состояния композитного материала. Композитная конструкция содержит композитный материал и оптическое волокно, размещенное в этом композитном материале. Оптическое волокно содержит множество квантовых точек для усиления его нелинейных оптических свойств. Квантовые точки могут быть размещены в сердечнике, в оболочке и/или на поверхности оптического волокна. Оптическое волокно выполнено с возможностью передачи сигналов и выполнено чувствительным к дефекту в композитном материале. Квантовые точки создают нелинейный эффект, такой как эффект второго порядка, в ответ на наличие дефекта в композитном материале. На основании регистрации и анализа сигналов, имеющих нелинейный эффект, созданный квантовыми точками, может быть обнаружен дефект в композитном материале. Технический результат – возможность обнаружения дефектов в композитной конструкции. 3 н. и 9 з.п. ф-лы, 7 ил.

 


Наверх