Патенты автора Демин Максим Викторович (RU)

Изобретение относится к области биологии и медицины, в частности к гистологии и патологической анатомии. Для приготовления клеточных блоков из эксфолиативного материала шейки матки и цервикального канала накапливают клеточный осадок в центрифужной пробирке с помощью центрифугирования первичного полученного образца. К полученному осадку добавляют раствор желатина для образования сгустка. Затем к образовавшемуся сгустку добавляют 10% нейтральный забуференный раствор формалина. После этого клеточный сгусток переносят в гистологический мешочек, который помещают в кассету для гистологической проводки, выполняют проводку материала, переносят его в парафин, получают клеточный блок. Получают парафиновые срезы для гистологической и иммуногистохимической окраски с последующим заключением под предметное стекло и микроскопическим исследованием. Способ позволяет получить образцы эксфолиативного материала шейки матки и цервикального канала, которые повышают качество и достоверность диагностики дисплазии и рака шейки матки. 3 ил.

Изобретение относится к оптике. Способ получения оптического сенсора включает создание многослойной плазмонной структуры, содержащей слой наночастиц. На квадратное, размером 1×1 см, химически очищенное кварцевое стекло (марки КУ-1) наносят, а затем термически высушивают при температуре 60-100°С в течение 5 минут гидрозоль наночастиц серебра размером 44 нм в количестве 20 мкл. Технический результат заключается в создании простой и эффективной конструкции для регистрации сигнала усиленного комбинационного рассеяния (до порядков 103) электромагнитным полем плазмонов, генерируемых под действием когерентного лазерного излучения на его поверхности, конструкции, позволяющей определять малые (до 10-5 М) концентрации химических органических веществ.

Изобретение относится к оптике и биофизике. Cпособ получения усиленного сигнала комбинационного рассеяния света от молекул сывороточного альбумина человека в капле жидкости с помощью плазмонного эффекта, индуцируемого на наночастицах серебра когерентным лазерным излучением, отличается тем, что на серебряную пленку наносят водную каплю, содержащую сывороточный альбумин человека и наночастицы серебра размером 32 нм. Затем лазер фокусируют на участке капли, обладающем наибольшим радиусом кривизны, и детектируют усиленное комбинационное рассеяние молекул белка вблизи поверхности капли. Технический результат заключается в возможности получения повторяемого сигнала гигантского комбинационного рассеяния от молекул белка – сывороточного альбумина человека в растворе, производя его детекцию и последующее определение структуры в нативной форме. 1 ил.

Изобретение относится к области биофизики, а именно к медицинской физики, и описывает способ прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом (ОЛЛ), в частности прогнозирования рисков возникновения лекарственной резистентности при проведении химиотерапии у пациентов с ОЛЛ с помощью исследования свойств биологических жидкостей физическими методами. Флуоресцентный способ прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом, включающий забор крови до и после химиотерапии, выделение флуоресцентного макро-биомаркера эффективности химиотерапии, отличается тем, что макро-биомаркером является концентрация аденозин-трифосфата (АТФ), которую определяют автоматизировано, с помощью лазерного конфокального микроскопа, путем подсчета интенсивности флуоресценции макро-биомаркера, и при концентрации АТФ 1,04±0,14 мг/мл не наблюдается риск развития гепатотоксических эффектов в данный момент времени, при концентрации АТФ 0,8±0,112 мг/мл наступает апоптоз клеток, при концентрации АТФ 0,312±0,042 мг/мл наступает некроз клеток. 1 табл.

Изобретение относится к медицине и касается флуоресцентного способа прогнозирования эффективности химиотерапии у детей, больных острым лимфобластным лейкозом, путем определения концентраций аденозинтрифосфата в митохондриях, при котором производят забор крови до и после химиотерапии, выделяют флуоресцентный макро-биомаркер эффективности химиотерапии, где макро-биомаркером является концентрация аденозинтрифосфата в митохондриях клеток крови, которую определяют автоматизировано, с помощью лазерного конфокального микроскопа, путем регистрации интенсивности флуоресценции макро-биомаркера. Изобретение обеспечивает осуществление оценки эффективности химиотерапии, в частности возникновения гепатотоксических эффектов и лекарственной резистентности при проведении химиотерапии у пациентов-детей с острым лимфобластным лейкозом. 1 пр.

 


Наверх