Патенты автора Ахметгалиев Ринат Закирович (RU)

Изобретение относится к нефтяной промышленности и может быть использовано для удаления из полости электроцентробежных насосов различных видов осадков, например неорганических солей, твердых взвешенных частиц песка, асфальтосмолистых и др. веществ. Клапан обратный электроцентробежного насоса для очистки погружного оборудования от осадков содержит корпус с верхней и нижней присоединительными резьбами, сферический клапан, перекрывающий посадочное седло, шлицевый вал погружного электронасоса насоса, выходящий в полость ловильной головки насоса. Между шлицевым валом электроцентробежного насоса и обратным клапаном размещена крыльчатка, содержащая корпус со ступенчатой внутренней полостью и наклонные к вертикали лопасти. Верхний торец корпуса соединен со штоком, входящим в проходное отверстие седла обратного клапана насоса. Внутрь корпуса с помощью резьбового соединения входит ступенчатый приводной шток. Нижняя часть штока под нижним торцом крыльчатки соединена со шлицевой втулкой, насаженной неподвижно на шлицевый вал насоса. Для осуществления способа очистки погружного оборудования от осадков останавливают насос для проведения ремонта. Производят закачку с устья скважины в колонну насосно-компрессорных труб химического реагента в расчетном объеме. Включают электроцентробежный насос в обратном направлении для посадки шарика клапана в седло и выдерживают время для растворения осадка в оборудовании. Производят запуск насоса в постоянный режим работы с обычным направлением вращения его вала. Достигается технический результат - повышение надежности открытия обратного клапана и удаления осадков из полости погружного оборудования скважины с применением химических реагентов. 2 н.п. ф-лы, 2 ил.

Изобретение относится к нефтяной промышленности и может быть использовано для удаления из полости электроцентробежных насосов и колонны насосно-компрессорных труб (НКТ) различных видов осадков, например неорганических солей, твердых взвешенных частиц песка, асфальтосмолистых и др. веществ. Клапан для закачки жидкости в скважину содержит корпус с верхним и нижним присоединительными резьбами, запорный элемент в виде шара, пружину с регулятором силы ее сжатия, неподвижный полый шток в виде цилиндрической опоры со сквозными радиальными каналами для протока жидкости из колонны насосно-компрессорных труб, ограничитель перемещения шара. Внутри цилиндрической опоры, выполненной ступенчатой, размещен гидрораспределитель потоков со сквозными непересекающимися между собой радиальными и вертикальными каналами. Радиальные каналы гидрораспределителя сообщены с радиальными каналами цилиндрической опоры и соединены между собой центральным вертикальным каналом, перекрытым в нижнем торце дополнительным подпружиненным шаром. Наружная поверхность верхней ступени цилиндрической опоры выполнена с диаметром, меньшим внутреннего диаметра корпуса клапана. Достигается технический результат – повышение надежности работы клапана в условиях присутствия в добываемой продукции твердых взвешенных частиц и обеспечение возможности удаления осадков из погружного оборудования использованием малых объемов химических реагентов. 2 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения массовых дебитов нефти и воды, а также объемного расхода свободного нефтяного газа в продукции нефтяной скважины. Технический результат предлагаемого способа заключается в сокращении времени, затрачиваемого на измерения и повышение их точности при добыче высоковязкой или высокообводненной нефти с малым газосодержанием. Способ включает поступление продукции нефтяной скважины в измерительную емкость с калиброванной частью, разделение ее на газовую и жидкую фазы, поочередный отбор газа из верхней части емкости сепаратора по газоотводной линии и жидкости из нижней части емкости сепаратора, измерение дебита жидкости по скорости наполнения калиброванной части емкости, а дебита газа - по скорости ее опорожнения. Измерение гидростатического перепада давления в емкости при полном заполнении ее калиброванной части для переключения цикла налива емкости на цикл слива жидкости. При этом переключение налива жидкости в емкость сепаратора на ее последующий слив производится по достижению в емкости сепаратора заданного перепада гидростатического давления, а в емкости сепаратора поднимают давление выше давления в выкидном коллекторе скважины установкой на газоотводной линии регулируемого дросселя. Причем повышение давления в емкости сепаратора производят пропорционально уменьшению количества газа в добываемой продукции, а при полном отсутствии газа в продукции газоотводную линию перекрывают полностью. 1 ил.

Изобретение относится к нефтяной промышленности и может быть использовано для определения газового фактора нефти, а также дебитов нефти и воды нефтяных скважин. Технической задачей предлагаемого способа является обеспечение возможности измерения дебитов нефти, воды и газа при различных содержаниях свободного газа в измеряемой продукции, в том числе при его полном отсутствии. Способ включает поступление продукции нефтяной скважины в измерительную емкость с калиброванной частью, разделение ее на газовую и жидкую фазы, измерение дебита жидкости по скорости наполнения калиброванной части емкости и переключение потоков нефти и газа с помощью поршня. При этом поршень герметично размещают в калиброванной части емкости, в котором при достижении им верхнего крайнего положения под действием напора поступающей продукции открывается проходной канал, позволяющий далее поршню двигаться вниз под собственным весом, превышающим сопротивления его движению, и пропуская через себя измеряемую среду. При достижении им крайнего нижнего положения под действием силы тяжести поршня проходной канал перекрывается и поршень начинает движение вверх под напором поступающей снизу в измерительную емкость продукции скважины. При этом общий дебит продукции скважины рассчитывают по времени движения поршня от крайнего нижнего до крайнего верхнего положений и объему, описываемому поршнем за этот период. Количественный состав измеряемой продукции определяют путем отбора ее пробы по высоте калиброванной части измерительной емкости в пробоотборную камеру при достижении крайнего верхнего положения поршня в емкости, последующего ее слива из нижней точки камеры и замера объемов сливаемых нефти и воды, а также их плотности, при этом объем газовой фазы в продукции рассчитывают вычитанием объемов обеих жидкостей из всего внутреннего объема камеры. 3 ил.

Изобретение относится к нефтяной промышленности и может быть использовано для определения газового фактора нефти, а также дебитов нефти и воды нефтяных скважин. Технический результат заключается в упрощении измерений дебитов и повышении их точности. Способ включает поступление продукции нефтяной скважины в сепаратор с калиброванной частью, разделение ее на газовую и жидкую фазы, последовательный отбор газа и жидкости из сепаратора с помощью поплавка и переключателя потоков. Измерение дебита жидкости по скорости наполнения калиброванной части сепаратора, а дебита газа - по скорости ее опорожнения, измерение гидростатического перепада давления в сепараторе при полном заполнении ее калиброванной части для определения количества воды в добываемой продукции. Переключение отбора газа на слив жидкости из сепаратора при достижении уровнем жидкости в нем крайнего верхнего положения производится поплавком за счет архимедовой силы выталкивания его в жидкости, действующей на верхнюю сторону переключателя потоков. Переключение слива жидкости на отбор газа из сепаратора при достижении уровнем жидкости крайнего нижнего положения производится поплавком за счет его силы тяжести в газовой среде, действующей на нижнюю сторону переключателя потоков. Дебиты жидкости и газа рассчитываются по периодам времени между замыканиями электрических контактов, установленных на обеих сторонах переключателя потоков, а периоды времени перемещения переключателя потоков после замыкания контактов до его крайних положений из расчетов исключаются. 2 ил.

Изобретение относится к нефтяной промышленности и может быть использовано для определения газового фактора нефти, а также дебитов нефти и воды нефтяных скважин. Технический результат заключается в обеспечении возможности измерения дебита жидкости при малом содержании свободного нефтяного газа или его отсутствия в измеряемой продукции. Способ измерения продукции нефтяной скважины включает поступление продукции нефтяной скважины в сепаратор с калиброванной частью, разделение ее на газовую и жидкую фазы, последовательный отбор газа и жидкости соответственно из верхней и нижней точек сепаратора, измерение дебита жидкости по скорости наполнения калиброванной части сепаратора, а дебита газа – по скорости ее опорожнения, а также плотности продукции в калиброванной части сепаратора с помощью датчиков гидростатического перепада давления, установленных на разных уровнях калиброванной части сепаратора. В условиях дефицита свободной газовой фазы в продукции скважины циклические опорожнения сепаратора от жидкости после ее заполнений производят с помощью сифонной трубки, восходящую линию которой соединяют с нижней точкой калиброванной части сепаратора, а нисходящую – с напорной линией скважины, и заряжающейся при достижении уровнем жидкости в сепарационной емкости крайней верхней точки трубки сифона, а срывающего свою работу при достижении уровнем жидкости в сепараторе точки ее отбора сифоном. Точку отбора жидкости из емкости сифоном располагают непосредственно под нижним датчиком, а верхнюю точку трубки сифона – непосредственно над верхним датчиком гидростатического давления. Объемный расход жидкости, сливаемый через сифон, поддерживают превышающим объемный расход поступающей жидкости в сепаратор регулированием дросселя на нисходящей линии сифона. 1 ил.

Изобретение относится к области компрессоростроения и может быть использовано в различных отраслях промышленности. Способ периодического компримирования газа, включающий цикл подачи насосом рабочей жидкости под давлением от питающей емкости в компрессионную камеру с одновременным вытеснением из ее верхней части газа в напорную линию через нагнетательный клапан и, по мере достижения уровнем рабочей жидкости в компрессионной камере максимального положения, переключение компрессионной камеры на слив, цикл опорожнения этой камеры от рабочей жидкости с одновременным поступлением в нее компримируемого газа через всасывающий клапан и, по мере достижения уровнем рабочей жидкости минимального положения, повторение циклов. Цикл опорожнения компрессионной камеры от рабочей жидкости производят без прекращения ее подачи насосом в компрессионную камеру, причем опорожнение этой камеры от рабочей жидкости производят с расходом, превышающим подачу перекачивающего рабочую жидкость насоса. Задачей предложенного способа является упрощение способа и повышение надежности работы компрессора. 1 ил.

 


Наверх