Патенты автора Койтов Станислав Анатольевич (RU)

Изобретение относится к способу автоматизированного раскроя кварцевых и кремнеземных тканей и может быть использовано в авиационной и ракетной технике для раскроя заготовок из кварцевых и кремнеземных тканей, предназначенных для изготовления абляционного теплозащитного покрытия (ТЗП) и аэродинамических элементов управления высокоскоростных изделий ракетной техники. Способ включает укладку ткани на подложку и резку газолазерным пучком по заданной траектории. В качестве заготовки берут кварцевые и кремнеземные ткани с поверхностной плотностью не более 10 кг×м-2. Подачу ткани осуществляют автоматически, а в качестве подложки используют ламелевый стол, оборудованный устройством фиксации и натяжения ткани. Резку заготовок осуществляют лазерным пучком с параметрами: мощность не более 90 Вт и скорость перемещения не более 25 мм/с, позволяющими производить раскрой ткани за один проход с минимальным оплавлением краев заготовки. Технический результат состоит в повышении точности раскроя и качества полученных раскроем кварцевых и кремнеземных тканей. 1 ил.

Изобретение относится к авиационной и ракетной технике, в частности для наружной тепловой защиты. Комплексное теплозащитное покрытие металлических конструкций планера высокоскоростных летательных аппаратов включает несколько теплоизоляционных слоёв. Один слой выполнен из органического или неорганического композиционного материала с тугоплавким наполнителем из неорганических газонаполненных или вакуумированных микросфер, обладающий низкой плотностью. Другой теплозащитный слой выполнен из эрозионно-стойкого абляционного армированного композиционного материала, состоящего из полимерного связующего и двух видов тугоплавких наполнителей, волоконного наполнителя, образующего ткань объемного плетения, и нанодисперсного порошка оксидов или карбидов переходных металлов, на который нанесено защитное лакокрасочное покрытие интумесцентного типа. Слои прочно соединены между собой. Достигается снижение массы. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области металлургии, а именно к литейным прецизионным сплавам на основе железа, используемым для изготовления деталей с высокой размерной стабильностью в изделиях прецизионной техники, например электронных приборах, летательных аппаратах, преимущественно работающих в контакте с неметаллами, такими как ситаллы, кварцевое стекло, керамика. Сплав содержит никель, кобальт, ниобий, углерод, железо и примеси при следующем соотношении компонентов, мас.%: никель 31,5-34,5, кобальт 4,0-5,5, ниобий 0,55-1,2, углерод до 0,35, железо и примеси остальное. В качестве примесей сплав содержит хром, марганец и кремний в количестве, не превышающем 0,3 мас.% каждого. Достигается снижение значения термического коэффициента линейного расширения, обеспечивающего сохранение стабильности эксплуатационных характеристик в интервале температур от минус 100 до +300°С, и достаточный для изготовления отливок методом фасонного литья уровень трещиноустойчивости и обрабатываемости. 1 з.п. ф-лы, 2 табл.

Изобретение относится к ракетной технике, а более конкретно к тепловой защите. Двухслойное теплозащитное покрытие из композиционных материалов для защиты металлических конструкций планеров гиперзвуковых летательных аппаратов имеет один абляционный слой. Абляционный слой выполнен эрозионно стойким. Внутренний теплоизоляционный слой выполнен из полимерного кремнийорганического связующего с наполнителем из стеклянных газонаполненных микросфер. Наружный эрозионно стойкий абляционный слой выполнен из кремнеземной ткани объемного плетения, пропитанной полимерным связующим, наполненным тугоплавкими частицами оксида алюминия. Достигается увеличение времени работы изделия. 1 ил.

Изобретение относится к теплозащитным покрытиям на основе силикатов щелочных металлов и предназначено для использования в авиационной и космической областях. Предложен материал «Вулкан-М» для наружной тепловой защиты летательного аппарата, включает связующее, наполнитель с полыми микросферами, удаляемые в процессе термообработки органические добавки, где в качестве связующего содержит этилсиликат, жидкое стекло каустическое калиевое, коллоидное вяжущее - кремнезоль, в качестве наполнителя используют вакуумные алюмосиликатные микросферы, каолиновые и бентонитовые глины, муллитокремнеземистое волокно, микрокремнезем, а удаляемыми органическими добавками являются триполифосфат натрия в качестве промотора адгезии, пластификатор - полиэтиленгликоль, разжижитель массы - полиметиленнафталинсульфонат, влагоудерживающая добавка - полиалкилацетат при следующем соотношении компонентов (мас.%): этилсиликат (1-2), коллоидное вяжущее - кремнезоль (23-26), стекло жидкое каустическое калиевое (45-50), вакуумные алюмосиликатные микросферы (4-5), каолиновые и бентонитовые глины (15-20), муллитокремнеземистое волокно (2-3), микрокремнезем (0,5-1,5), триполифосфат натрия в качестве промотора адгезии (0,5-1,5), пластификатор - полиэтиленгликоль (0,2-0,4), разжижитель массы - полиметиленнафталинсульфонат (0,4-0,8), влагоудерживающая добавка - полиалкилацетат (0,1). Технический результат – предложенный материал имеет повышенную стойкость, рабочую температуру до 1200°С и низкий коэффициент термического линейного расширения. Материал может использоваться для защиты наружных поверхностей высокоскоростных летательных аппаратов при высоких температурах эксплуатации. 1 табл.

Изобретение относится к полимерным композитам и предназначено для изготовления теплозащитных покрытий корпусов гиперзвуковых летательных аппаратов. Наномодифицированный эпоксидный композит, включающий эпоксидную смолу, отвердитель, неорганический наполнитель и наночастицы оксида алюминия, или оксида циркония, и/или оксида иттрия в качестве наномодификатора, где в качестве наполнителя содержит кварцевую или кремнеземную ткань объемного переплетения, а наномодификатор выполнен в форме сфер, полученных методом испарения-конденсации, при следующем соотношении компонентов, мас.ч.: смола эпоксидная 100, отвердитель 10, наполнитель 60-65, сферические наночастицы Al2O3, или ZrO2, и/или Y2O3 17-22. Технический результат - обеспечение наномодифицированного эпоксидного композита, обладающего повышенными физико-механическими характеристиками и высокой эрозионной стойкостью. 3 пр., 1 ил.

Изобретения относятся к области ракетных двигателей на твердом топливе. Твердотопливный ракетный двигатель в первом варианте содержит корпус с размещенным в нем твердым топливом, сопловой блок, установленный на заднем днище корпуса, и запальник, включающий воспламенитель твердого топлива, вмонтированный в переднее и/или в заднее днище корпуса. В переднее днище корпуса запальник вмонтирован вдоль оси центрального канала. Запальник включает лазер, соединенный кабелем с источником электропитания и направленный фокусом пучка лазерного излучения заданной формы импульса на слой легковоспламеняющегося вещества, нанесенного на торец воспламенителя, а воспламенитель помещен в перфорированную оболочку и с радиальным просветом установлен в кожухе. В запальнике, установленном в переднем днище корпуса, кожух одним торцом герметически соединен с лазером, а на другом его торце выполнен раструб, на котором установлен дефлектор радиально направленного выброса пламени от воспламенителя на поверхность сквозного центрального канала твердого топлива. В запальнике, установленном в заднем днище корпуса, кожух одним торцом герметически соединен с лазером, а на другом его торце выполнен патрубок, которым запальник эксцентрично центральному каналу вмонтирован в заднее днище корпуса с возможностью концентрированного выброса пламени от воспламенителя через форкамеру на торец твердого топлива. Во втором варианте твердотопливный ракетный двигатель содержит бронирующие покрытия на торцах твердого топлива, а запальник, вмонтирован в переднее днище корпуса и представляет собой лазер. Лазер возбуждает воспламенение твердого топлива фокусом направленного пучка лазерного излучения заданной формы импульса через форкамеру на торец твердого топлива, для чего в бронирующем покрытии торца твердого топлива образована локальная зона воспламенения с возможностью перехода горения в центральный канал твердого топлива. В третьем варианте ракетного двигателя в качестве запальника в заднее днище корпуса эксцентрично соплу вмонтирован лазер, возбуждающий воспламенение твердого топлива фокусом направленного пучка лазерного излучения заданной формы импульса через форкамеру в одну из сотовых ячеек пирамидальной формы, выполненных на торце твердого топлива, с последующим переходом горения по всей сотовой пирамидально-ячеистой поверхности торца твердого топлива. Группа изобретений позволяет повысить надежность и сократить время воспламенения твердого топлива. 3 н.п. ф-лы, 8 ил.

 


Наверх