Патенты автора Железный Сергей Петрович (RU)

Изобретение относится к области подготовки природного газа и газового конденсата к дальнему транспорту, в частности к автоматическому управлению отмывкой ингибитора - метанола из нестабильного газового конденсата (НГК). Способ оптимизации процесса отмывки ингибитора включает автоматическое поддержание технологических параметров процесса подготовки газа и газового конденсата к дальнему транспорту, отделение водометанольного раствора - BMP и НТК с отмывкой ингибитора - метанола из конденсата, отвод его через клапан-регулятор и последующую регенерацию метанола из полученного BMP с возвратом его в технологический процесс. При запуске установки в эксплуатацию АСУ ТП осуществляет поиск уставки минимально возможного расхода BMP с низкой концентрацией метанола, подаваемого на вход инжекции инжектора и гарантирующего максимальную отмывку метанола из НТК с минимальными затратами энергии на его регенерацию. Технический результат изобретения: повышение точности нахождения значения уставки минимально возможного расхода BMP с низкой концентрацией метанола, который гарантирует максимально возможную отмывку метанола из НГК. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту, в частности к автоматическому поддержанию плотности нестабильного газового конденсата (НТК) с применением турбодетандерных агрегатов (ТДА) в установках низкотемпературной сепарации газа (далее установка) северных нефтегазоконденсатных месторождений (НГКМ) РФ, подаваемого в магистральный конденсатопровод (МКП). Способ включает очистку поступающей из добывающих скважин газоконденсатной смеси от механических примесей в сепараторе первой ступени сепарации и разделение газоконденсатной смеси на НТК, газ и водный раствор ингибитора (ВРИ), с последующим отводом НТК и ВРИ в разделитель жидкостей (РЖ). Далее из РЖ ВРИ отводят на регенерацию ингибитора в цех регенерации ингибитора, а НТК подается насосом в МКП. Газ выветривания из РЖ используют на собственные нужды, либо компримируют и закачивают в МГП, либо утилизируют. Плотность НТК контролирует АСУ ТП датчиком плотности НТК и управляет ей. Одновременно АСУ ТП контролирует температуру газа на выходе низкотемпературного сепаратора, автоматически поддерживая ее путем управления скоростью вращения ротора ТДА, которая задается каскадом из двух ПИД-регуляторов, реализованных на базе АСУ ТП установки. Для этого на вход задания SP ПИД-регулятора поддержания плотности НТК на выходе РЖ АСУ ТП подает сигнал уставки плотности НТК, значение которой задает обслуживающий персонал. А на вход обратной связи PV этого же ПИД-регулятора подают сигнал фактической плотности НТК с датчика, установленного на выходе РЖ. Сравнивая эти сигналы, ПИД-регулятор формирует на своем выходе CV сигнал уставки частоты вращения ротора ТДА, обеспечивающей необходимое охлаждение газожидкостной смеси, поступающей на вход низкотемпературного сепаратора, и гарантирующей достижение необходимой плотности НТК на выходе РЖ. Сигнал этой уставки с выхода CV поступает на вход задания SP ПИД-регулятора управления скоростью вращения ротора ТДА. Одновременно на вход обратной связи PV этого ПИД-регулятора, с датчика частоты вращения ротора ТДА, подают сигнал фактической скорости вращения ротора ТДА. Сравнивая поступающие на входы сигналы, ПИД-регулятор управления скоростью вращения ротора ТДА формирует на своем выходе CV сигнал управления КР, установленным на выходе с турбины ТДА. Параллельно указанному каскаду ПИД-регуляторов устанавливают второй каскад ПИД-регуляторов, также реализованный на базе АСУ ТП. Этот каскад управляет расходом добытой смеси, поступающей на вход установки. Каждый из этих двух каскадов ПИД-регуляторов снабжают входом Start/Stop, подав на который сигнал логический «ноль», АСУ ТП налагает запрет на работу каскада, а подав сигнал логическая «единица», включает его в работу. При этом первый каскад ПИД-регуляторов управляет технологическим процессом с момента запуска установки в работу и до тех пор, пока рабочий орган КР, регулирующий расход газа, проходящего через турбину ТДА, не достигнет одного из своих крайних положений, полностью открыт или прикрыт до предельно допустимой величины. Как только рабочий орган этого КР окажется в одном из крайних положений, АСУ ТП блокирует работу первого каскада ПИД-регуляторов, подав на его вход Start/Stop сигнал логический «ноль». Одновременно АСУ ТП подает сигнал логическая «единица» на вход Start/Stop второго каскада ПИД-регуляторов, разрешив ему управлять расходом добытой газожидкостной смеси, поступающей на вход установки, с помощью КР, установленного на ее входе. Благодаря такому переключению АСУ ТП поддерживает заданную плотность НТК, подаваемого из РЖ в МКП. Осуществив переключение управления поддержания плотности НТК с одного каскада ПИД-регуляторов на другой, АСУ ТП генерирует сообщение оператору о переходе установки на новый режим работы. Заявляемый способ позволяет повысить качество принятых управляющих решений на установке путем исключения человеческого фактора из управления технологическим процессом поддержания плотности НТК, снижение вероятности риска возникновения осложнений и аварий в МКП. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ включает предварительную очистку добытой газожидкостной смеси от механических примесей, отделение из нее части смеси нестабильного газового конденсата (НГК) и водного раствора ингибитора (ВРИ) в сепараторе первой ступени редуцирования, которые по мере их накопления в нижней части этого сепаратора отводят в разделитель жидкостей (РЖ). Частично очищенную добытую смесь с этого сепаратора подают в аппарат воздушного охлаждения (АВО), управляемого отдельной системой автоматического управления (САУ) АВО, где ее охлаждают за счет теплообмена с окружающей средой. На выходе с АВО газожидкостную смесь разделяют на два потока, которые дополнительно охлаждают в первых секциях рекуперативных теплообменников (ТО) «газ-газ» и ТО «газ-конденсат». При этом разделение на потоки осуществляет клапан-регулятор (КР) расхода газожидкостной смеси, установленный на входе ТО «газ-конденсат». Потоки газожидкостной смеси, после выхода их из первых секций ТО, объединяют и через КР, выполняющий роль управляемого редуктора, подают в низкотемпературный сепаратор газа, оснащенный датчиком температуры. В этом сепараторе она окончательно разделяется на осушенный холодный газ и смесь ВРИ с НГК, которую направляют на вход второй секции ТО «газ-конденсат» и далее в РЖ, из которого НТК направляют в магистральный конденсатопровод (МКП), ВРИ на регенерацию, а поток выделенного газа - газ выветривания - из РЖ транспортируют для утилизации или компримируют и подают в магистральный газопровод (МГЦ). Выходящий из низкотемпературного сепаратора холодный осушенный газ разделяют на два потока, один из которых подают на вход второй секции ТО «газ-газ», а второй - на байпас этой секции, оснащенный КР расхода газа через него. Этот КР обеспечивает автоматическое поддержание температуры в низкотемпературном сепараторе, осушенного газа на входе в МГП и НГК на входе в МКП, работая в паре с КР, установленным на входе ТО «газ-конденсат». Работой этих КР управляют ПИД-регуляторы, реализованные на базе АСУ ТП установки. Для управления режимом работы САУ АВО используют отдельный, третий, ПИД-регулятор, также реализованный на базе АСУ ТП. На вход заданий SP всех трех ПИД-регуляторов АСУ ТП подает единое значение сигнала уставки температуры Т в низкотемпературном сепараторе газа, которую необходимо поддерживать при текущих условиях работы установки. Одновременно на вход обратной связи PV этих же ПИД-регуляторов АСУ ТП подает сигнал значения фактической температуры - Т с датчика температуры в низкотемпературном сепараторе. Также АСУ ТП задает порядок включения и отключения этих ПИД-регуляторов путем подачи на их вход Start/Stop сигнала в виде логической «единицы» и логического «нуля». Заявляемый способ позволяет максимально использовать производимый на установке холод для автоматического поддержания температурного режима в низкотемпературном сепараторе и оптимизировать энергопотребление АВО установки с соблюдением технологических норм и ограничений, предусмотренных ее технологическим регламентом. 1 з.п. ф-лы, 2 ил.

Заявлен способ автоматического управления низкотемпературной сепарацией газа на нефтегазоконденсатных месторождениях севера РФ. Техническим результатом является повышение эффективности процесса подготовки природного газа и НТК к дальнему транспорту с оптимизацией использования пластовой энергии для процесса низкотемпературной сепарации газа и улучшение качества подготавливаемой продукции, поставляемой потребителям. Способ включает первичную очистку в сепараторе первой ступени сепарации добытой газоконденсатной смеси от механических примесей, водного раствора ингибитора - ВРИ и тяжелых углеводородов нестабильного газового конденсата - НГК, которые, по мере их накопления в нижней части этого сепаратора, отводят в разделитель жидкостей - РЖ для ее разделения на компоненты и дегазацию. Газ выветривания утилизируют. ВРИ направляют на регенерацию. НГК с помощью насосного агрегата подают в магистральный конденсатопровод – МКП. Очищенную газоконденсатную смесь на выходе сепаратора первой ступени сепарации разделяют на два потока. Один поток подают на вход первой секции рекуперативного теплообменника - ТО «газ-газ». Второй поток через кран-регулятор - КР направляют на вход первой секции ТО «газ-конденсат». На выходе из первых секций этих ТО потоки объединяют и подают объединенный поток через редуцирующий штуцер в низкотемпературный сепаратор, в котором производят финальное отделение осушенного газа от раствора ВРИ и НГК, который, по мере его накопления в нижней части низкотемпературного сепаратора, направляют в РЖ через вторую секцию ТО «газ-конденсат», обеспечивая охлаждение потока добытой газожидкостной смеси, проходящей по его первой секции. Осушенный газ с выхода низкотемпературного сепаратора через вторую секцию ТО «газ-газ» подают для рекуперации холода второму потоку добытой газожидкостной смеси, проходящему по первой секции этого же ТО. Далее направляют в магистральный газопровод – МГП. Нагрев осушенного газа осуществляют до температуры, исключающей растепление мерзлого грунта вокруг МГП. Устанавливают КР, управляемый пропорционально-интегрально-дифференцирующим - ПИД-регулятором, который построен на базе автоматизированной системы управления технологическими процессами - АСУ ТП установки, на байпасную линию второй секции ТО «газ-газ». На вход задания этого ПИД-регулятора и ПИД-регулятора, который управляет распределением добытой газожидкостной смеси между первыми секциями ТО «газ-газ» и ТО «газ-конденсат», подают единое значение сигнала уставки температуры в низкотемпературном сепараторе газа, которую необходимо поддерживать при текущих условиях работы промысла в заданном диапазоне, и одновременно на вход обратной связи этих же ПИД-регуляторов подают сигнал с датчика температуры в низкотемпературном сепараторе. Обрабатывая эти сигналы, указанные ПИД-регуляторы формируют на своих выходах управляющие сигналы для своих КР. Осуществляется управление количеством осушенного газа, проходящим по байпасной линии второй секции ТО «газ-газ», и потоками добытой газоконденсатной смеси, проходящими по первым секциям ТО «газ-газ» и ТО «газ-конденсат», и удерживают таким образом температуру в низкотемпературном сепараторе в заданном диапазоне, и одновременно контролируют значение температуры осушенного газа, поступающего в МГК, и температуры НГК, подаваемого в МКП. Все эти операции выполняют с помощью АСУ ТП. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области добычи и подготовки природного газа к дальнему транспорту на установках комплексной подготовки газа (УКПГ) нефтегазоконденсатных месторождений (НГКМ) Севера РФ. Способ включает контроль средствами автоматизированной системы управления технологическим процессами (АСУ ТП) УКПГ, расхода осушенного газа, поступающего в магистральный газопровод (МГП), расхода нестабильного газового конденсата (НГК), поступающего в магистральный конденсатопровод (МКП), автоматическое поддержание температуры сепарации газа в низкотемпературном сепараторе каждой технологической линии (ТЛ) низкотемпературной сепарации газа (НТС) газа при заданном значении расхода газа по нему путем изменения степени дросселирования газа на штуцере, стоящем перед этим сепаратором. Задание диспетчера газодобывающего предприятия по объему добычи НГК поступает в АСУ ТП, которая исполняет задание с помощью пропорционально интегрально дифференцирующего (ПИД) регулятора поддержания расхода НГК в МКП, реализованного на базе АСУ ТП. На вход задания SP этого ПИД-регулятора АСУ ТП подает сигнал задания диспетчера. Одновременно АСУ ТП подает на его вход обратной связи PV сигнал текущего расхода НГК в МКП. ПИД-регулятор сравнивает эти параметры и формирует на своем выходе CV сигнал задания, который подает на вход задания SP ПИД-регуляторов всех ТЛ НТС газа. Одновременно на вход обратной связи PV этих ПИД-регуляторов АСУ ТП подает сигнал фактического расхода осушенного газа по УКПГ. Также одновременно на вход Kp ПИД-регулятора каждой ТЛ НТС подается сигнал значения коэффициента пропорциональности Кп_i определяющего степень воздействия этого ПИД-регулятора на управляемый им клапан-регулятор (КР) расхода газа по его ТЛ НТС. При этом величина коэффициента пропорциональности Кп_i определяется для каждой ТЛ НТС ее блоком расчета коэффициента пропорциональности в зависимости от текущей температуры в низкотемпературном сепараторе этой линий по показаниям, регистрируемым АСУ ТП с помощью соответствующего датчика температуры. Способ обеспечивает заданную степень извлечения НГК из природного газа на УКПГ в начальной и нарастающих стадиях эксплуатации НГКМ при соблюдении норм и ограничений на технологические параметры процесса, предъявляемые технологическим регламентом установки, гарантируя заданное качество подготовки природного газа для дальнего транспорта с одновременным учетом фактического состояния оборудования установки. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области подготовки природного газа и газового конденсата к дальнему транспорту, в частности к автоматическому управлению отмывкой ингибитора – метанола - из нестабильного газового конденсата (НГК) на установках низкотемпературной сепарации газа, расположенных в районах Севера РФ. Способ включает отделение водометанольного раствора (BMP) из НГК в сепараторах газа и разделителях жидкости (РЖ) первой и второй ступеней сепарации газа. В РЖ последней ступени производится отмывка метанола из конденсата с помощью BMP низкой концентрации. Получаемый BMP на выходе РЖ второй ступени сепарации газа поступает на регенерацию метанола с его возвратом в технологический процесс подготовки газа и газового конденсата к дальнему транспорту на установке, контролируемой автоматизированной системой управления технологическими процессами (АСУ ТП). АСУ ТП с заданной периодичностью производит поиск оптимального расхода BMP низкой концентрации, который необходимо подавать в газожидкостную смесь, поступающую из промежуточного и низкотемпературного сепараторов для отмывки из НТК метанола. При этом учитывается инерционность технологических процессов. Найденное значение АСУ ТП фиксирует в своей базе данных (БД) как уставку оптимального расхода BMP низкой концентрации. После этого, автоматически, в режиме ПИД-регулирования АСУ ТП поддерживает подачу найденного оптимального расхода BMP низкой концентрации для инжекции в объединенный поток газожидкостной смеси, поступающий в РЖ из промежуточного и низкотемпературного сепараторов газа. АСУ ТП с заданной периодичностью контролирует фактическую концентрацию метанола в потоке BMP низкой концентрации, подаваемом на вход инжекции инжектора. Также АСУ ТП контролирует температуру и концентрацию метанола в BMP на выходе РЖ последней ступени сепарации газа. И во время поиска уставки оптимального расхода BMP низкой концентрации, подаваемого на вход инжекции инжектора для отмывки метанола, АСУ ТП перед каждым следующим шагом повышения его расхода производит вычисление ожидаемой концентрации метанола в BMP на выходе РЖ последней ступени сепарации газа, используя формулу. АСУ ТП после выполнения расчета , используя данные измерения фактической температуры BMP на выходе РЖ последней ступени сепарации газа, по специальной таблице, загруженной в ее базу данных, оценивает возможность замерзания BMP на следующем, i-ом шаге. И, если для следующего шага поиска уставки разница между фактической температурой BMP и оценкой температуры замерзания BMP окажется меньше 5°С, АСУ ТП останавливает поиск уставки и назначает в качестве ее расход BMP низкой концентрации, полученный на (i-1)-ом шаге. Способ обеспечивает повышение надежности функционирования установки и предотвращает возникновение аварийных ситуаций на производстве, связанных с потенциальной возможностью замерзания BMP на выходе РЖ последней ступени. 1 табл., 2 ил.

Изобретение относится к области добычи и подготовки газового конденсата к дальнему транспорту. Способ автоматического управления технологическим процессом подачи газового конденсата в магистральный конденсатопровод (МКП) включает автоматизированную систему управления технологическими процессами (АСУ ТП), управляющую работой параллельно работающих насосных агрегатов. Каждый из агрегатов связан с всасывающим трубопроводом, а их напорные трубопроводы входят в коллектор МКП. МКП за коллектором оснащен датчиком расхода конденсата. Электродвигатель (ЭД) каждого агрегата подключен к индивидуальному преобразователю частоты и оснащен датчиком тока в линии его электропитания. Задание на изменение частоты вращения ЭД выдает индивидуальный пропорционально-интегрально-дифференцирующий ПИД-регулятор. АСУ ТП, получив задание по производительности установки комплексной подготовки газа, разделяет все готовые к работе насосные агрегаты на три группы. В первую группу входит один насосный агрегат - основной. Во вторую группу входят агрегаты, которые вместе с основным агрегатом обеспечат выполнение плана по подаче конденсата в МКП. Эту группу АСУ ТП определяет как работающие. Третью группу АСУ ТП относит к группе резервные и будет их использовать в случае необходимости. Разделение на группы АСУ ТП производит с помощью двух блоков коммутации, подключенных к ПИД-регулятору каждого агрегата. Первый блок коммутации коммутирует один из двух типов сигнала задания и подает требуемый сигнал задания на вход задания SP его ПИД-регулятора в зависимости от группы, в которую включен агрегат. Второй блок коммутации коммутирует один из двух типов сигнала обратной связи и подает выбранный сигнал на вход обратной связи PV его ПИД-регулятора в зависимости от группы, в которую включен агрегат. По команде на запуск системы АСУ ТП включает основной агрегат, подав с помощью первого блока коммутации на вход задания SP его ПИД-регулятора сигнал плана по прокачке конденсата в МКП, который устанавливает диспетчер газодобывающего предприятия. Одновременно, используя второй блок коммутации, АСУ ТП подает на вход обратной связи PV ПИД-регулятора основного агрегата сигнал датчика расхода газового конденсата в МКП. После выхода основного насосного агрегата на рабочий режим АСУ ТП последовательно запускает в работу насосные агрегаты из группы работающих. Для этого она, используя первый блок коммутации, подает на вход задания SP их ПИД-регуляторов сигнал, равный значению среднего тока в линиях электропитания основного агрегата и включенных параллельно с ним насосных агрегатов из группы работающих вместе с вновь подключаемым к ним агрегатом. При этом значение среднего тока АСУ ТП вычисляет по формуле, учитывающей значение тока в линии электропитания ЭД основного агрегата, значение тока в линии электропитания ЭД i-го включенного и включаемого агрегата из группы работающих. А на вход обратной связи PV этих ПИД-регуляторов АСУ ТП, используя их вторые блоки коммутации, подает сигнал с датчиков тока, установленных в линии питания управляемых ими ЭД агрегатов. При этом АСУ ТП осуществляет контроль всех измеряемых параметров и пересчет значений вычисляемых параметров с заданной периодичностью, гарантирующей непрерывность управления технологическим процессом. Изобретение направлено на поддержание заданного расхода перекачиваемого газового конденсата в МКП с высокой надежностью и минимальными энергозатратами путем автоматического равномерного распределения нагрузки между агрегатами. 4 з.п. ф-лы, 1 ил.

Способ предназначен для оптимизации процесса отмывки ингибитора из нестабильного газового конденсата (НТК) на установках низкотемпературной сепарации (НТС) газа, реализуемый автоматизированной системой управления технологическими процессами (АСУ ТП). Способ включает автоматическое управление процессом НТС газа, обеспечивающее: автоматическое поддержание в рамках заданных границ технологическим регламентом установки технологических параметров процесса подготовки газа и газового конденсата к дальнему транспорту; отделение водометанольного раствора (BMP) из НТК в сепараторах газа и разделителях жидкостей первой и второй ступеней сепарации газа с отмывкой метанола из конденсата в разделителе жидкостей второй ступени сепарации газа и последующей его регенерацией из получаемого BMP с возвратом регенерированного метанола в технологический процесс подготовки газа и газового конденсата к дальнему транспорту на установке; выделение газа из НТК в разделителях жидкостей первой и второй ступеней сепарации газа для транспортировки его на утилизацию или компримирование и подачи в магистральный газопровод; транспортировки НТК из разделителей жидкостей первой и второй ступени сепарации газа в магистральный конденсатопровод; отвод одной части BMP с низкой концентрацией метанола из разделителя жидкостей первой ступени сепарации газа через клапан-регулятор подержания уровня BMP в разделителе жидкостей первой ступени сепарации газа установки на утилизацию, например путем закачки данного раствора в пласт, и отвод другой части BMP с низкой концентрацией метанола через клапан-регулятор и инжектор в разделитель жидкостей второй ступени сепарации газа для отмывки метанола из НТК, причем при запуске установки в работу для текущих параметров технологического процесса АСУ ТП с учетом его инерционности производит поиск оптимального расхода BMP с низкой концентрацией метанола, подаваемого из разделителя жидкостей первой ступени сепарации газа, который необходимо инжектировать в объединенный поток смеси НТК и BMP, поступающий на вход инжектора из промежуточного и низкотемпературного сепараторов, для достижения максимально возможной отмывки метанола в разделителе жидкостей второй ступени из НТК в BMP, отводимый на регенерацию, после чего АСУ ТП фиксирует найденное значение оптимального расхода BMP с низкой концентрацией метанола в виде уставки в своей базе данных, и далее, автоматически, в режиме ПИД-регулирования поддерживает подачу найденного оптимального расхода BMP с низкой концентрацией метанола для инжекции в объединенный поток НТК и BMP, поступающий в инжектор из промежуточного и низкотемпературного сепараторов газа, и эта поддержка подачи оптимального расхода BMP с низкой концентрацией метанола осуществляется до момента значимого изменения параметров технологического процесса или поступления команды на реализацию следующего цикла поиска новой уставки оптимального расхода BMP с низкой концентрацией метанола, инжектируемого в объединенный поток смеси НТК и BMP, поступающий на вход инжектора. Технический результат – снижение энергозатрат на регенерацию метанола. 6 з.п. ф-лы, 2 ил.

Изобретение относится к горному делу и может быть применено для предупреждения гидратообразования и разрушения гидратов на установках низкотемпературной сепарации (НТС) газа. Ингибитор подают в точки перед защищаемыми участками, комплекс которых представляет собой установку низкотемпературной сепарации газа НТС. АСУ ТП обеспечивает подачу ингибитора в количестве, достаточном для предупреждения гидратообразования, минимизируя его расход. Для этого АСУ ТП контролирует: расход газожидкостной смеси на входе и выходе сепаратора первой ступени сепарации; температуру и давление газожидкостной смеси на входной линии установки, в сепараторе первой ступени сепарации, промежуточном и низкотемпературном сепараторе; концентрацию ингибитора в водном растворе на выходе разделителей жидкости сепаратора первой ступени сепарации, промежуточного и низкотемпературного сепаратора; концентрацию и расход регенерированного ингибитора, подаваемого на каждый защищаемый участок установки. Управление расходом регенерированного ингибитора осуществляет клапан-регулятор управляемый ПИД-регулятором, на вход обратной связи PV которого поступает сигнал с датчика расхода регенерированного ингибитора. На вход задания SP этого ПИД-регулятора подается сигнал расчетного значения расхода ингибитора, скорректированного поправкой на фактическую концентрацию регенерированного ингибитора. Эту поправку вычисляет блок коррекции, на первый вход которого подают сигнал рассчитанного АСУ ТП значения массового расхода ингибитора для защищаемого участка, достаточный для требуемого снижения температуры гидратообразования. А на второй вход блока коррекции подают сигнал с выхода CV ПИД-регулятора подержания концентрации ингибитора в его водном растворе на выходе с защищаемого участка. На вход обратной связи PV ПИД-регулятора подержания концентрации ингибитора поступает сигнал с датчика концентрации водного раствора ингибитора, установленного на выходе её с защищаемого участка. А на вход задания SP ПИД-регулятора подержания концентрации ингибитора подается сигнал рассчитанного АСУ ТП значения концентрации водного раствора ингибитора, которая исключает гидратообразование в защищаемом участке. Технический результат заключается в оптимизации расхода ингибитора для предупреждения гидратообразования на установках НТС газа, эксплуатируемых на Крайнем Севере. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ предусматривает очистку поступающей газоконденсатной смеси, поступающей из добывающих скважин, от механических примесей в сепараторе первой ступени сепарации. На установке осуществляют разделение газоконденсатной смеси на НГК, газ и водный раствор ингибитора (ВРИ), с последующим отводом НГК и ВРИ в разделитель жидкостей для дегазации. Из разделителя жидкостей ВРИ отводят на регенерацию ингибитора в цех регенерации ингибитора, а НГК подается насосом в магистральный конденсатопровод (МКП). Газ выветривания из разделителя жидкости отправляют для использования на собственные нужды, на компремирование с последующей закачкой в магистральный газопровод (МГП) или на утилизацию. Для управления плотностью НГК АСУ ТП осуществляет контроль датчиком плотности плотность НГК, подаваемого в МКП. Одновременно АСУ ТП контролирует датчиком температуры температуру газа на выходе низкотемпературного сепаратора, величина которой автоматически поддерживается путем управления скоростью вращения ротора турбодетандера (ТДА), которая задается каскадом из двух пропорционально-интегрально-дифференцирующих (ПИД) регуляторов, реализованных на базе АСУ ТП установки. Для этого на вход задания SP ПИД-регулятора поддержания плотности НГК на выходе разделителя жидкостей подают сигнал уставки плотности НГК, значение которой задает обслуживающий персонал. А на вход обратной связи PV этого же ПИД-регулятора подают сигнал фактической плотности НГК с датчика, установленного на выходе разделителя жидкостей. Сравнивая эти сигналы, ПИД-регулятор формирует на своем выходе CV сигнал уставки частоты вращения ротора ТДА, обеспечивающей необходимое охлаждение газожидкостной смеси, поступающей на вход низкотемпературного сепаратора, и гарантирующей достижение необходимой плотности НГК на выходе разделителя жидкостей. Сигнал этой уставки АСУ ТП подает на вход задания SP ПИД-регулятора управления скоростью вращения ротора ТДА. Одновременно на вход обратной связи PV этого ПИД-регулятора, с датчика частоты вращения ротора ТДА, подается сигнал фактической скорости вращения ротора ТДА. Сравнивая поступающие на входы сигналы, ПИД-регулятор управления скоростью вращения ротора ТДА формирует на своем выходе CV сигнал управления клапаном-регулятором, установленным на выходе с турбины ТДА. Благодаря этому осуществляется управление объемом осушенного газа, выходящего из низкотемпературного сепаратора и проходящего через компрессор ТДА. При этом АСУ ТП одновременно контролирует и давление в разделителе жидкостей, автоматически поддерживая его значение, заданное технологическим регламентом установки, с помощью клапана-регулятора, установленного на выходе газа из разделителя жидкостей. Заявляемый способ позволяет в автоматическом режиме контролировать и поддерживать заданную плотность НГК, подаваемого в МКП, предотвратить образование газовых пробок и их скоплений в конденсатопроводе, снизить вероятность риска возникновения аварийных ситуаций при эксплуатации МКП, связанных с колебаниями плотности НГК. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ предусматривает подачу газожидкостной смеси с выхода сепаратора первой ступени редуцирования на вход АВО и понижение температуры смеси до заданных значений температуры в низкотемпературном сепараторе. Затем охлажденную смесь разделяют на два потока и подают для дополнительного охлаждения через трубопровод на вход первой секции рекуперативного теплообменника «газ-газ» и на вход первой секции рекуперативного теплообменника «газ-конденсат» через клапан-регулятор расхода газожидкостной смеси. При этом (АСУ ТП) регулирует расход газожидкостной смеси, проходящей через теплообменник, обеспечивая поддержание заданной температуры НГК. Затем потоки газожидкостной смеси с выходов первых секций рекуперативных теплообменников объединяются и через клапан-регулятор, выполняющий роль управляемого редуктора, поступает в низкотемпературный сепаратор газа, оснащенный датчиком температуры. В результате редуцирования температура смеси падает до необходимого значения, которое поддерживается АСУ ТП путем регулирования с помощью ПИД-регуляторов и управляемого редуктора. В низкотемпературном сепараторе происходит окончательное разделение газожидкостной смеси на осушенный холодный газ и смесь (НГК с примесью ВРИ), которые подаются на вход второй секции рекуперативного теплообменника «газ-конденсат» и далее, в разделитель жидкости, в котором выделяются НГК и ВРИ, а также газ выветривания. НГК с помощью насосного агрегата подается в МКП. Отделенный ВРИ направляется в цех регенерации ингибитора УКПГ. Холодный газ, выходящий из низкотемпературного сепаратора, разделяют на два потока, один из которых подают на вход второй секции рекуперативного теплообменника «газ-газ», а второй - на байпас этой секции, оснащенный клапаном-регулятором расхода газа. АСУ ТП, используя клапан-регулятор расхода газа, изменяет соотношение потоков газа, проходящих через рекуперативный теплообменник и байпас, обеспечивая в реальном масштабе времени коррекцию температуры газа, необходимую для подачи его в МГП. Заявляемый способ позволяет: подержать заданный температурный режим технологических процессов установки, обеспечивающий ее эффективную эксплуатацию; осуществить контроль и поддержание необходимой температуры осушенного газа и нестабильного газового конденсата с целью защиты вечномерзлых грунтов от размораживания при подземной прокладке газопроводов на Крайнем Севере. 6 з.п. ф-лы, 2 ил.

Изобретение относится к области добычи и подготовки газового конденсата к дальнему транспорту, в частности к автоматическому управлению насосными агрегатами, обеспечивающими подачу конденсата в магистральный конденсатопровод (МКП). Управление производительностью параллельно работающих насосных агрегатов осуществляется путем изменения частоты питающего трехфазного напряжения, поступающего на электродвигатель каждого агрегата от его частотного преобразователя. Задание на изменение частоты частотному преобразователю выдается индивидуальным пропорционально-интегрально-дифференцирующим регулятором, включенным в состав автоматической системы управления технологическими процессами установки комплексной подготовки газа. Распределение нагрузки осуществляется в зависимости от величины тока в цепи питания электродвигателей агрегатов путем изменения задания скорости их вращения частотно регулируемым приводом. Изобретение направлено на поддержание заданного расхода перекачиваемого газового конденсата в МКП с высокой надежностью и минимальными энергозатратами путем автоматического распределения нагрузки между параллельно соединенными насосными агрегатами. 1 ил.

Изобретение относится к области добычи природного газа и газового конденсата, в частности к управлению технологическими процессами куста скважин при добыче газа и газового конденсата. Используя результаты гидродинамических исследований и промысловых данных по всем скважинам, осуществляют настройку системы автоматического управления кустом газовых скважин (САУ КГС), которая обеспечивает в процессе эксплуатации автоматическое определение и поддержание максимального значения давления в газосборном коллекторе куста скважин. При этом реализуется автоматическое распределение нагрузки между скважинами куста пропорционально их геологическим возможностям по давлению. Обеспечивается автоматическая защита технологических режимов скважин, не допускающая выхода параметров скважин за установленные максимальные и минимальные ограничения. Автоматически стабилизируется работа куста скважин путем минимизации влияния существенных отклонений давления возникающих в коллекторе куста этих скважин в процессе его эксплуатации. 4 з.п. ф-лы., 2 ил.

 


Наверх