Патенты автора Набатников Сергей Александрович (RU)

Изобретение относится к способам и устройствам для получения алкенов и алкинов, например, этилена и ацетилена из доступного газообразного исходного сырья, например, метана, этана, пропана и других предельных углеводородов. Предложен способ конверсии газообразного исходного сырья в алкены и алкины, в котором осуществляют подачу в проточную импульсно-детонационную трубу газообразного исходного сырья с одновременной или последующей подачей одновременно горючего и окислителя, заполнение проточной импульсно-детонационной трубы и частично или полностью проточного реактора газообразным исходным сырьем, горючим и окислителем, циклическое инициирование детонационного горения с обеспечением разогрева газообразного исходного сырья до температуры пиролиза в проточной импульсно-детонационной трубе в результате его сжатия в бегущей детонационной волне, где газообразное исходное сырье, подвергаемое сжатию и разогреву в бегущей детонационной волне, разбавлено горючим и окислителем и в проточном реакторе в результате сжатия газообразного исходного сырья в бегущей ударной волне, где газообразное исходное сырье, подвергаемое сжатию и разогреву в бегущей ударной волне, не разбавлено горючим и окислителем, или в бегущей детонационной волне, где газообразное исходное сырье, подвергаемое сжатию и разогреву в бегущей детонационной волне, разбавлено горючим и окислителем. Предложенный способ реализован в устройстве, включающем камеру сгорания, проточный реактор, систему охлаждения, системы подачи горючего и окислителя, систему зажигания и систему подачи газообразного исходного сырья, в котором камера сгорания выполнена в виде проточной импульсно-детонационной трубы с системой охлаждения, включающей последовательно расположенные камеру смешения и зажигания, содержащую коллекторы подачи горючего, окислителя и газообразного исходного сырья, ускоритель пламени, обеспечивающий переход горения в детонацию, и гладкую трубу, с установленным в её выходном сечении проточным реактором. Технический результат - обеспечение способа и устройства для получения алкинов (ацетилен) и алкенов (этилен) из доступного газообразного исходного сырья (например, метана и пропана). 2 н. и 3 з.п. ф-лы, 1 ил., 3 пр.

Группа изобретений относится к способу обезвреживания летучей золы, образующейся при сжигании бытовых и промышленных отходов, и к устройству для его осуществления. Способ обезвреживания летучей золы, образующейся при сжигании отходов, включает подачу токсичной летучей золы в реактор, в котором токсичная летучая зола обезвреживается в среде сильно перегретого водяного пара в отсутствие кислорода, причем сильно перегретый водяной пар подают в реактор в виде импульсных сверхзвуковых струй таким образом, чтобы в реакторе формировались устойчивые высокотемпературные вихревые структуры, токсичную летучую золу подают в реактор непрерывно или порциями, чтобы обеспечить максимально длительное пребывание летучей золы в этих вихревых структурах, интенсивные ударные волны, сопровождающие подачу сверхзвуковых струй сильно перегретого водяного пара, предотвращают агломерацию частиц летучей золы, удаление обезвреженной летучей золы из реактора осуществляют непрерывно или порциями, при этом в реакторе для предотвращения подсоса атмосферного воздуха поддерживают повышенное давление. Устройство для осуществления указанного выше способа обезвреживания летучей золы включает реактор и систему управления, реактор снабжен импульсно-детонационным генератором и секцией подачи сильно перегретого водяного пара в реактор, причем секция подачи сильно перегретого водяного пара выполнена таким образом, чтобы обеспечить подачу не менее двух встречных импульсных сверхзвуковых струй сильно перегретого водяного пара в реактор и подачу токсичной летучей золы в реактор вместе с импульсными сверхзвуковыми струями сильно перегретого водяного пара, а также системами подачи токсичной летучей золы, удаления обезвреженной летучей золы и охлаждения реактора. Технический результат – повышение эффективности способа обезвреживания токсичной летучей золы при исключении предварительной фильтрации отходящих газов. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к воздушно-реактивным двигателям, устанавливаемым на концах лопастей несущего винта реактивного вертолета. Предложен способ организации рабочего процесса в импульсно-детонационном тяговом модуле для реактивного вертолета, размещенном на конце лопасти несущего винта, включающий подачу топлива, смешение топлива с воздухом, заполнение камеры сгорания горючей смесью, возникновение детонационной волны, расширение продуктов детонации в горелочном тракте и истечение продуктов детонации через сопло для создания реактивной тяги, в котором на горячие внутренние стенки камеры сгорания жидкое топливо подается циклически в виде струй, причем струи ориентированы так, чтобы горячие внутренние стенки камеры сгорания смачивались жидким топливом равномерно с учетом направления действия центробежных сил, а в результате термомеханического взаимодействия струй жидкого топлива с горячими внутренними стенками камеры сгорания происходит фрагментация струй с образованием капель и пленок жидкого топлива, а также паров топлива, обеспечивающих формирование детонационно-способной двухфазной горючей смеси, заполняющей горелочный тракт, а принудительное зажигание горючей смеси приводит к образованию в горелочном тракте ускоряющегося турбулентного пламени и к быстрому переходу горения в детонацию, так что вся оставшаяся в горелочном тракте двухфазная горючая смесь сгорает в детонационной волне, бегущей по направлению к соплу, а после ее выхода из сопла происходит истечение продуктов детонации через сопло, сопровождающееся снижением давления в горелочном тракте до уровня давления торможения в набегающем потоке воздуха, обеспечивая тем самым условия для продувки горелочного тракта и его повторного заполнения детонационно-способной двухфазной смесью топлива и воздуха, а истекающие из сопла продукты детонации создают реактивную тягу. Предложенный способ реализован в устройстве, включающем воздухозаборник с обратным клапаном, камеру сгорания с источником зажигания, выходное устройство (сопло) и систему управления, в котором к воздухозаборнику присоединен горелочный тракт, включающий камеру сгорания с дозатором топлива и источником зажигания, а также детонационную трубу с препятствиями-турбулизаторами и сопло, установленное в выходном сечении детонационной трубы. Предложенное устройство обеспечивает положительную тягу в условиях полета с крейсерской скоростью (соответствует скорости набегающего потока воздуха около 70 м/с). 2 н. и 4 з.п. ф-лы, 5 ил.

Изобретение относится к способам и устройствам для определения относительной детонационной способности газообразных и жидких горючих материалов. Способ определения относительной детонационной способности газообразных и диспергированных конденсированных горючих материалов включает подачу горючей смеси, заполнение детонационной трубы горючей смесью, зажигание горючей смеси слабым источником энергии, ускорение пламени на турбулизирующих препятствиях с образованием ударной волны, бегущей перед ускоряющимся пламенем, очаговое самовоспламенение ударно-сжатой горючей смеси с последующим переходом горения в детонацию, регистрацию факта перехода горения в детонацию и оценку относительной детонационной способности по сравнению с эталонной горючей смесью, при этом компоненты горючей смеси могут подаваться раздельно в виде газов и/или диспергированных конденсированных горючих материалов и заполнять детонационную трубу, создавая в ней течение горючей смеси с заданными термодинамическими и газодинамическими параметрами, причем зажигание горючей смеси слабым источником энергии происходит циклически, а факт перехода горения в детонацию регистрируется в каждом цикле по времени перехода горения в детонацию, причем для обеспечения одинакового расстояния перехода горения в детонацию для различных горючих смесей используется явление фокусировки ударной волны, бегущей перед ускоряющимся пламенем, а относительная детонационная способность горючей смеси оценивается сравнением среднего времени перехода горения в детонацию, определенного по нескольким циклам, с таковым для эталонной горючей смеси, причем количество циклов должно быть достаточным для статистической достоверности получаемого результата. Техническим результатом является увеличение точности детонационной способности различных газообразных и диспергированных конденсированных горючих материалов. 2 н. и 9 з.п. ф-лы, 2 ил.

Изобретение относится к способам организации рабочего процесса в воздушно-реактивных двигателях с непрерывно-детонационным горением и устройствам для их осуществления, предназначенным, в частности, для высокоскоростных беспилотных летательных аппаратов. Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе с непрерывно-детонационным горением включает разгон летательного аппарата до сверхзвуковой скорости, обеспечивающей начало автономного полета летательного аппарата с таким двигателем, частичное торможение набегающего сверхзвукового воздушного потока в косых скачках уплотнения и в пристеночном пограничном слое перед поступлением в кольцевую камеру сгорания, непрерывную подачу топлива в зону смешения с воздухом, формирование детонационно-способной смеси топлива и воздуха. Далее инициируют непрерывно-детонационное горение топливной смеси, истечение продуктов детонации из кольцевой камеры сгорания через кольцевое сопло со сверхзвуковой скоростью с образованием реактивной струи и созданием реактивной тяги. Набегающий сверхзвуковой воздушный поток сначала частично тормозится в косых скачках уплотнения и в пристеночном пограничном слое, а затем ускоряется в веере волн разрежения с частичным восстановлением параметров набегающего сверхзвукового воздушного потока и поступает в прямоточный воздушно-реактивный двигатель в виде слабо заторможенного сверхзвукового воздушного потока. Одна часть воздуха направляется в кольцевую камеру сгорания. Другая часть, включающая пристеночный пограничный слой, направляется в обход кольцевой камеры сгорания, чтобы обеспечить охлаждение стенок кольцевой камеры сгорания и предотвратить газодинамическое влияние непрерывно-детонационного горения смеси топлива и воздуха в кольцевой камере сгорания на течение слабо заторможенного сверхзвукового воздушного потока на входе в прямоточный воздушно-реактивный двигатель. Способ реализован в устройстве, включающем сверхзвуковой воздухозаборник, центральное тело, кольцевую камеру сгорания с поясом форсунок подачи топлива, газодинамический изолятор, расположенный между кольцевой камерой сгорания и внешней стенкой заднего конуса центрального тела. Изобретение обеспечивает возможность осуществления автономного полета при низком числе Маха. 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретение относится к силовым установкам летательных аппаратов различного назначения, работающим на твердом топливе (например, синтетическом полимере). Способ организации детонационного горения пиролизных газов в камере сгорания воздушно-реактивного двигателя, при котором для дросселирования реактивной тяги используется продувка реактора-пиролизера с гранулированным твердым топливом высокотемпературными или низкотемпературными газами из газогенератора. Сгорание смеси пиролизных газов с воздухом в камере сгорания происходит в детонационной волне, обеспечивающей поток тепла в реактор-пиролизер из камеры сгорания, достаточный для достижения требуемой скорости образования пиролизных газов на том или ином рабочем режиме, а также достаточный для надежного охлаждения элементов конструкции камеры сгорания за счет эндотермического пиролиза гранулированного твердого топлива. Способ реализован в устройстве, в котором реактор-пиролизер отделен от кольцевой камеры сгорания стенкой, выполненной из материала с высокой теплопроводностью. Внутри реактора-пиролизера расположен теплообменный каркас, выполненный из материала с высокой теплопроводностью и находящийся в тепловом контакте со стенкой, отделяющей реактор-пиролизер от кольцевой камеры сгорания. Гранулированное твердое топливо в реакторе-пиролизере находится в тепловом контакте как со стенкой, отделяющей реактор-пиролизер от кольцевой камеры сгорания, так и с элементами теплообменного каркаса. Изобретение обеспечивает получение продуктов пиролиза с фазовым и химическим составом, требуемым для самоподдерживающегося детонационного горения и надежного охлаждения элементов конструкции камеры сгорания. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к области машиностроения, а более конкретно к устройствам для метания снарядов из стволов. Способ газодинамического разгона массивного тела, помещенного в ствол с горючей смесью, до высокой скорости с помощью стартового ускорения массивного тела и последующей организации детонационного режима горения горючей смеси в тыльной части тела, обеспечивающего толкающую силу, в котором после достижения массивным телом требуемой скорости, происходит зажигание горючей смеси. Горючая смесь зажигается с тыльной стороны массивного тела. При этом формируется импульсная детонация или непрерывная спиновая детонация. Способ реализован в устройстве, включающем ствол с разгоняемым телом, системы подачи горючего и окислителя, систему зажигания и систему ускорения разгоняемого тела. Разгоняемое тело имеет специальную форму в виде комбинации соосных переднего и заднего конусов, соединенных основаниями. Между стволом и разгоняемым телом имеется кольцевой зазор, а само тело центрируется в стволе с помощью направляющих. Достигается увеличение скорости разгона. 2 н. и 2 з.п. ф-лы, 1 ил.

Изобретение относится к способу и устройству для опреснения воды. Способ опреснения соленой воды, в котором опресняемая соленая вода, подаваемая в виде струи или пелены, периодически подвергается воздействию сильной ударной волны и высокоскоростного потока горячих газообразных продуктов детонации, приводящему к тонкой аэродинамической фрагментации струи или пелены опресняемой соленой воды. А образованный двухфазный факел подается тангенциально в вихревую зону, где в условиях сильно закрученного высокотемпературного потока происходит быстрое испарение микрокапель опресняемой соленой воды с образованием мелкодисперсной кристаллической морской соли, отделяемой от газообразных продуктов детонации и водяного пара благодаря полю центробежных сил. Газообразные продукты детонации и водяной пар выводятся из вихревой зоны в зону конденсации водяного пара и отделения его от газообразных продуктов детонации. Причем солевой остаток непрерывно удаляется из вихревой зоны в виде мелкодисперсной кристаллической морской соли. Способ реализован в устройстве, в котором системы фрагментации и испарения опресняемой соленой воды выполнены в виде импульсного генератора сильной ударной волны и высокоскоростного потока горячих газообразных продуктов детонации, присоединенного к вихревому реактору для испарения микрокапель опресняемой соленой воды с образованием мелкодисперсной кристаллической морской соли, соединенному с конденсатором водяного пара. Конденсатор водяного пара снабжен системой удаления газообразных продуктов детонации и системой отвода опресненной воды потребителю. Изобретение обеспечивает опреснение соленой воды с помощью термомеханического воздействия на струю или пелену соленой воды сильной ударной волной и высокоскоростным потоком горячих газообразных продуктов детонации, получаемыми в циклическом рабочем процессе с импульсно-детонационным сжиганием того или иного горючего. 2 н.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к способам и устройствам для получения сильно перегретого водяного пара. Способ получения сильно перегретого водяного пара из питательной воды за счет циклического детонационного сжигания горючей смеси, в котором водяной пар, предварительно получаемый из питательной воды, подвергается циклическому или непрерывному детонационному сжатию в случае, когда горючая смесь перемешана с водяным паром и находится внутри концентрационных пределов детонации, или циклическому ударному сжатию в случае, когда горючая смесь не перемешана с водяным паром, причем в обоих случаях часть тепловой энергии, выделяющейся при циклическом или непрерывном детонационном сжигании горючей смеси, расходуется на предварительное получение водяного пара из питательной воды с помощью теплопередачи. Предложенный способ реализован в устройстве, включающем камеру сгорания, системы подачи горючего и окислителя, систему зажигания и систему подачи питательной воды, в котором камера сгорания выполнена или в виде импульсно-детонационной трубы, или в виде непрерывно-детонационной камеры сгорания, снабженной системой охлаждения, а система подачи питательной воды включает приточный резервуар с датчиком температуры питательной воды и датчиком уровня питательной воды, причем приточный резервуар всегда частично заполнен питательной водой, а импульсно-детонационная труба или непрерывно-детонационная камера сгорания и подводящие магистрали систем подачи горючего и окислителя всегда погружены в эту питательную воду, а в верхней части приточного резервуара, всегда заполненной водяным паром, расположен паровой коллектор с клапаном, направляющий водяной пар во входное сечение импульсно-детонационной трубы или непрерывно-детонационной камеры сгорания. Изобретение направлено на формирование плотной и дальнобойной струи сильно перегретого водяного пара для переработки и утилизации твердых бытовых и других отходов по бескислородным технологиям. 3 н.п. ф-лы, 2 ил.

Изобретение относится к способам и устройствам для газификации угля сильно перегретым водяным паром для его конверсии в топливный газ или синтез-газ. Способ включает подачу угольных частиц и перегретого водяного пара в зону газификации угля и конверсии продуктов газификации в топливный газ или синтез-газ, отвод продуктов газификации потребителю и удаление зольного остатка. При этом угольные частицы или частицы углесодержащего материала подаются в высокоскоростную струю ударно сжатого сильно перегретого водяного пара для аэродинамической фрагментации агломератов частиц и предварительной термохимической подготовки двухфазной смеси «перегретый водяной пар - частицы», а образованная двухфазная струя подается тангенциально в вихревую зону газификации, где в условиях сильно закрученного потока происходит газификация угля и конверсия продуктов газификации в топливный газ или синтез-газ. Далее полученный топливный газ или синтез-газ выводится из зоны газификации частично к потребителю и частично для получения высокоскоростной струи ударно сжатого сильно перегретого водяного пара, а зольный остаток в виде расплава поступает в систему удаления зольного остатка. Технический результат заключается в обеспечении бескислородной газификации угля для его конверсии в топливный газ или синтез-газ. 2 н.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к способам и устройствам сжигания газообразного или распыленного жидкого топлива в режиме газовой или капельной детонации и может быть использовано в различных технологических устройствах и энергетических установках, работающих на импульсно-детонационном или непрерывно-детонационном горении, например, для инициирования детонации в непрерывно-детонационной камере сгорания турбореактивного двигателя. Способ инициирования детонации в трубе с горючей смесью включает быстрое формирование турбулентного фронта пламени, его ускорение и усиление образовавшейся ударной волны с последующим переходом горения в детонацию. Формирование турбулентного фронта пламени осуществляется в высокоскоростном турбулентном потоке горючей смеси, образованной за счет турбулентного смешения перекрестных сверхзвуковых струй горючего и окислителя, при помощи форкамерно-факельного зажигания, при этом форкамера заполняется горючей смесью, поступающей из детонационной трубы, а зажигание горючей смеси в форкамере осуществляется при помощи слабого источника зажигания. В результате достигается быстрый переход горения в детонацию с очень коротким преддетонационным расстоянием и временем. 2 н.п. ф-лы, 3 ил.

Изобретение относится к энергетическим установкам с импульсно-детонационным сжиганием ископаемых или синтетических горючих материалов, которые могут быть использованы, например, на электроэнергетических предприятиях или на промышленных предприятиях в составе различных технологических комплексов для получения электромеханической энергии, в том числе в арктических условиях. Предложен способ, в котором ударные волны и импульсные высокоскоростные струи продуктов детонации перед тем как направляться на традиционный турбонагнетатель сначала приводят во вращение массивный зубчатый маховик, а затем рассеиваются в промежуточном демпфирующем объеме, приводя к тому, что предписанные производителем предельно допустимые нагрузки на традиционный турбонагнетатель не превышаются, а высокотемпературные продукты детонации далее используются для получения тепловой, механической и электрической энергии с помощью известных газо- и паротурбинных энергетических установок. Предложенный способ реализован в предложенном устройстве, включающем импульсно-детонационную трубу, промежуточный демпфирующий объем, турбонагнетатель, системы подачи воздуха и горючего, систему зажигания и систему охлаждения, в котором к импульсно-детонационной трубе присоединены зубчатый маховик в герметичном корпусе и промежуточный демпфирующий объем, из которого высокотемпературные продукты детонации далее поступают на известные газо- и паротурбинные энергетические установки для получения тепловой, механической и электрической энергии. Изобретение обеспечивает получение электрической, механической и тепловой энергии при помощи ударных волн и высокоскоростных струй продуктов детонации, генерируемых с помощью импульсно-детонационного сжигания ископаемых или синтетических горючих, в энергетических установках с традиционными турбонагнетателями без превышения предельно допустимых нагрузок, предписанных производителем. 2 н. и 5 з.п. ф-лы, 5 ил.

Изобретение относится к способам распыливания жидкостей, а также эмульсий (например, водотопливных эмульсий) и суспензий (например, водоугольных суспензий), и т.п., в различных энергетических и технологических установках. Предложен способ сверхтонкого распыливания жидкостей и сред на их основе, включающий подачу жидкости или среды на ее основе в область фрагментации, в котором поданная жидкость или среда на ее основе периодически подвергается воздействию сильной ударной волны с образованием факела со сверхтонким распылом. Предложено устройство для осуществления способа сверхтонкого распыливания жидкости. Устройство включает форсунку подачи жидкости или среды на ее основе, импульсный генератор ударных волн с секцией ударно-волновой фрагментации, причем форсунка подачи жидкости или среды на ее основе установлена в секции ударно-волновой фрагментации импульсного генератора ударных волн. Изобретение обеспечивает сверхтонкое распыливание жидкости или среды на ее основе с размером фрагментов в факеле распыла 10-15 мкм. 2 н. и 1 з.п. ф-лы, 3 ил.

 


Наверх