Патенты автора Гаранина Анастасия Сергеевна (RU)

Использование: для приготовления раствора для инъекций, используемого при лечении онкологических заболеваний методом магнитной гипертермии и способу ее получения. Сущность изобретения заключается в том, что фармацевтическая композиция для приготовления инъекционного раствора при использовании в лечении магнитной гипертермии представляет собой лиофилизат раствора магнитных наночастиц кобальтового феррита (CоFе2О4) размером не более 20 нм, покрытых молекулами сорбита, при следующем соотношении компонентов, мас.%: кобальтовый феррит 70-75, сорбит 25-30. Технический результат: обеспечение возможности перерастворения заявляемой фармацевтической композиции и повторного высушивания с сохранением ее стабильности и фармакологических свойств, увеличении срока хранения раствора, приготовленного из заявляемой фармацевтической композиции. 2 н. и 6 з.п. ф-лы, 6 табл., 37 ил.

Изобретение относится к области медицины, а именно экспериментальной медицины, и может быть использовано для прижизненных наблюдений за уровнем активных форм кислорода (АФК) в органах и тканях. Способ включает предварительную подготовку экспериментальных животных с подкожно привитой опухолью, для чего животных наркотизируют посредством внутрибрюшинного введения раствора золетила в концентрации 50-75 мг/кг с ксилазином в концентрации 5-7,5 мг/кг, обеспечение доступа к подкожной опухоли животного, формирование ванночки для проведения исследования из кожной складки и подкожной мускулатуры спины животного, заполнение ванночки фосфатно-солевым буфером с рН 7.4, подготовку измерительного наноэлектрода, представляющего собой нанопипетку, заполненную пиролитическим углеродом с осажденной на нем платиной, с предварительной калибровкой наноэлектрода по пероксиду водорода, размещение экспериментального животного на предметном столе микроскопа, установку измерительного наноэлектрода в держателе интравитально-электрохимического модуля (ИВЭХ-модуля), взаимное позиционирование опухоли и измерительного наноэлектрода, помещение хлорсеребряного электрода сравнения в ванночку с раствором фосфатно-солевого буфера, подключение его к измерительной системе, подачу линейной развертки потенциала от -800 мВ до +800 мВ, пошаговое введение наноэлектрода в опухоль на заданную глубину под заданным углом и измерение силы тока при потенциале +800 мВ для определения уровня АФК на каждом шаге погружения наноэлектрода, определение значения концентрации АФК в опухоли по соответствующей калибровочной кривой, для построения которой наноэлектрод и электрод сравнения подключают к приборам для снятия вольтамперных характеристик и последовательно опускают в водные растворы пероксида водорода с известной концентрацией в диапазоне от 10-7 до 10-4 моль/л, подают развертку потенциала от -800 мВ до +800 мВ относительно хлорсеребряного электрода сравнения на наноэлектрод и измеряют значения силы тока при +800 мВ в каждом водном растворе пероксида водорода и строят калибровочную кривую, где на одной оси приведена концентрация пероксида водорода, а на другой - величина силы тока. Использование изобретения позволяет определить концентрацию АФК внутри опухоли живого экспериментального животного в заданной точке с высоким пространственным и временным разрешением, что позволит получить полную картину распределения АФК в объеме опухоли. 3 з.п. ф-лы, 1 пр., 6 ил.

Изобретение относится к медицине, а именно к биомедицине, и может быть использовано для измерения концентрации кислорода в подкожной опухоли экспериментальных животных. Проводят предварительную подготовку экспериментальных животных с подкожно привитой опухолью, для чего животных наркотизируют посредством внутрибрюшинного введения раствора золетила в концентрации 50-75 мг/кг с ксилазином в концентрации 5-7,5 мг/кг. Осуществляют обеспечение доступа к подкожной опухоли животного, для чего проводят разрез кожи по линии позвоночника и отделяют кожную складку с опухолью от прилегающих тканей. Проводят прижигание кровеносных сосудов в местах разреза и очищают опухоль от капсулы посредством удаления ее верхних слоев. Осуществляют формирование ванночки для проведения исследования из кожной складки и подкожной мускулатуры спины животного, для чего края кожной складки приподнимают и закрепляют с помощью шовного материала. Заполняют ванночку фосфатно-солевым буфером с рН 7.4. Проводят подготовку измерительного наноэлектрода, представляющего собой нанопипетку, заполненную пиролитическим углеродом с осажденной на нем платиной, с предварительной калибровкой наноэлектрода по кислороду. Размещают экспериментальное животное на предметном столе микроскопа. Осуществляют установку измерительного наноэлектрода в держателе интравитально-электрохимического модуля (ИВЭХ-модуля). Проводят взаимное позиционирование опухоли и измерительного наноэлектрода, помещают хлорсеребряный электрод сравнения в ванночку с раствором фосфатно-солевого буфера, подключают его к измерительной системе. Осуществляют подачу линейной развертки потенциала от -800 мВ до +800 мВ, пошаговое введение наноэлектрода в опухоль на заданную глубину под заданным углом и измерение силы тока при потенциалах от -500 мВ до -600 мВ для определения уровня кислорода на каждом шаге погружения наноэлектрода. Определяют значения концентрации кислорода в опухоли по соответствующей калибровочной кривой. Способ обеспечивает возможность определения концентрации кислорода внутри опухоли живого экспериментального животного в заданной точке с высоким пространственным и временным разрешением за счет применения наноэлектрода при значениях потенциала от -500 мВ до -600 мВ относительно хлорсеребряного электрода сравнения, что позволяет получить полную картину распределения кислорода в объеме опухоли. 3 з.п. ф-лы, 6 ил., 1 пр.
Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения системы для доставки противоопухолевого препарата в клетки опухоли, включающий смешение в присутствии воды модифицированных полимером наночастиц магнетита, эпитаксиально выращенных на наночастицах золота, с органическим соединением, химически связывающимся с наночастицами и обеспечивающим селективное проникновение наночастиц внутрь клеток опухоли, и водным раствором противоопухолевого препарата с последующим отделением полученных модифицированных наночастиц центрифугированием, отличающийся тем, что в качестве модифицированных полимером наночастиц используют наночастицы, полученные путем нагрева до 120°C в атмосфере инертного газа при перемешивании смеси дифенилового эфира, олеиновой кислоты, олеиламина и 1,2-гексадекандиола, введения в смесь пентакарбонила железа, выдерживания полученной смеси с последующим введением раствора, содержащего смесь тригидрата золотохлористоводородной кислоты и олеиламина в дифениловом эфире, предварительно выдержанного в атмосфере инертного газа, повторного нагрева смеси в атмосфере инертного газа от 120°C до 250°-260°C, выдерживания смеси при 250°-260°C в течение 25-30 мин и ее охлаждения до комнатной температуры, проводимыми в атмосфере инертного газа, выдерживания смеси при комнатной температуре в присутствии воздуха, добавления в смесь одноатомного спирта и отделения наночастиц магнетита центрифугированием, с последующей их обработкой раствором полимера, выбранного из группы, включающей триблок-сополимер, состоящий из центрального блока полипропиленгликоля со степенью полимеризации 56 и двух концевых блоков полиэтиленгликоля со степенью полимеризации 101 каждый, 1,2-дистеароил-sn-глицеро-3-фосфоэтаноламин-N-[карбокси(полиэтиленгликоль) - 2000] и триблок-сополимер, состоящий из центрального блока полипропиленгликоля со степенью полимеризации 30 и двух концевых блоков полиэтиленгликоля со степенью полимеризации 78 каждый, в органическом растворителе, затем ультразвуком, с последующим удалением растворителя, введением воды, повторной обработкой ультразвуком и отделением модифицированных наночастиц центрифугированием, в качестве противоопухолевого препарата используют доксорубицин, в качестве органического соединения, обеспечивающего селективное проникновение наночастиц внутрь клеток аденокарциномы предстательной железы человека, используют низкомолекулярный лиганд простатического специфического мембранного антигена, причем наночастицы вначале обрабатывают раствором доксорубицина, затем раствором низкомолекулярного лиганда простатического специфического мембранного антигена. Изобретение позволяет повысить цитотоксичность системы для доставки в клетки аденокарциномы человека противоопухолевого препарата. 3 пр.
Изобретение относится к биомедицине и может быть использовано для определения цитотоксичности веществ путем обработки клетки веществом с последующим определением токсичности вещества по изменению уровня внутриклеточных активных форм кислорода. Определение уровня внутриклеточных активных форм кислорода проводят путем ввода внутрь клетки заполненного углеродом кварцевого нанокапилляра, содержащего платину в полости острия нанокапилляра, имеющего форму усеченного конуса, с последующим определением изменения сигнала, вызванного электрохимической реакцией на острие капилляра с участием активных форм кислорода. Изобретение обеспечивает упрощение определения цитотоксичности веществ, а также имеет более высокую чувствительность по сравнению с аналогами. 4 пр.

 


Наверх