Патенты автора Валеева Альбина Ахметовна (RU)

Изобретение относится к технологии получения монокристалла диоксида титана ТiO2, который представляет собой широкозонный полупроводник для применения в коррозионно-стойких покрытиях, пигментах, газовых датчиках, медицинских имплантатах, оптических активных покрытиях, фотокатализе, солнечной энергетике. Способ получения монокристалла диоксида титана бестигельной зонной плавкой в атмосфере воздуха включает формирование заготовки в форме бруска путем прессования порошка из ТiO2 и спекания в течение 6 ч на воздухе, формирование монокристаллической затравки из ТiO2, размещение верхнего штока с заготовкой над затравкой, размещенной на нижнем штоке, расплавление заготовки и затравки, выращивание монокристалла ТiO2 при одновременном вертикальном и вращательном движении верхнего штока с заготовкой, при этом предварительно для формирования поликристаллической заготовки порошок ТiO2 отжигают на воздухе при температуре 1200°С в течение 6 ч, спекание полученного бруска проводят при температуре 1350°С, а выращивание осуществляют в вертикальном направлении при скорости движения верхнего штока с заготовкой, равной 8-12 мм/ч, скорости его вращения 1-4 об/мин и скорости движения нижнего штока с затравкой, составляющей 10-14 мм/ч, в отсутствие его вращения. Полученный монокристалл диоксида титана имеет стабильную тетрагональную структуру, содержит только одну фазу, обладает минимальной дефектностью, характеризуется стабильностью свойств при высокотемпературных воздействиях. 3 ил., 2 пр.

Изобретение относится к материаловедению и электронике и может быть использовано при изготовлении контактов в электролитических конденсаторах. Сначала прессуют смесь пентаоксида ниобия и металлического порошка ниобия. Затем проводят высокотемпературную обработку в вакууме 10-3-10-4 Па с промежуточным перетиранием в три стадии: I стадия – при температуре 1380-1420°С в течение 22-24 ч; II стадия – при температуре 1490-1510°С в течение 23-24 ч; III стадия – при температуре 1590-1610°С в течение 21-22 ч. После этого осуществляют фрагментирование в планетарной шаровой мельнице со скоростью вращения 480-520 об/мин в среде изоприлового спирта с реверсом через каждые 15 мин в течение 480-500 мин с последующим облучением электронным пучком в диапазоне энергий 140-300 кэВ в течение 30-240 мин в просвечивающем электронном микроскопе. Полученный монооксид ниобия, характеризующийся высокой металлической проводимостью, улучшенной стойкостью к сжиганию и эффективными свойствами самовосстановления, имеет стехиометрический состав NbO1,00 и неупорядоченную структуру, содержит только одну фазу, а также обладает повышенной собственной проводимостью по сравнению с монооксидом ниобия с упорядоченной структурой. 3 ил., 2 пр.

Изобретение относится к микроэлектронике и может быть использовано при изготовлении электропроводящих слоёв в микроэлектронных слоистых структурах. Сначала готовят смесь поликристаллического порошка диоксида титана и титана, взятых в массовом соотношении (59-60):(40-41)соответственно. Полученную смесь спекают при 1480-1520oC в вакууме 10-3 Па в течение 24 ч, прессуют и формируют заготовку. Затем осуществляют селективное плавление поверхности заготовки и затравки из монокристалла монооксида титана с использованием двух биэллипсоидных зеркал, установленных в вертикальной конфигурации, и ксеноновой лампы мощностью 5 кВт в качестве источника излучения, расположенной в фокальной точке нижнего зеркала, в условиях бестигельной зонной плавки в атмосфере аргона чистотой 99,998 при его постоянном давлении 7-9 бар. Зона расплава находится в фокальной точке верхнего зеркала. Плотность светового потока, попадающего на зону расплава, регулируют механическим или автоматическим перемещением шторок из нержавеющей стали. Скорость передвижения нижнего штока с заготовкой в вертикальном направлении 2-5 мм/ч, скорость движения верхнего штока с затравкой из монокристалла монооксида титана 5-9 мм/ч, скорость вращения верхнего штока 2-4 об/мин. Полученный монокристалл монооксида титана имеет стехиометрический состав TiO1,00, стабильную неупорядоченную кубическую структуру, содержит только одну фазу, обладает минимальной дефектностью и сохраняет свои свойства при высокотемпературных воздействиях. 3 ил., 2 пр.

Изобретение относится к области технологии материалов, которые могут применяться в электронике в качестве контактов для конденсаторов. Cпособ получения монокристалла оксида ниобия включает бестигельную зонную плавку в оптической системе с использованием в качестве исходного материала поликристаллического порошка оксида ниобия в атмосфере аргона в условиях избыточного давления при одновременном вращательном и вертикальном движении штока с исходным материалом и в отсутствии вертикального перемещения штока с затравочным материалом, при этом плавку осуществляют с использованием двух биэллипсоидных зеркал, установленных в вертикальной конфигурации, и ксеноновой лампы мощностью 5 кВт в качестве источника излучения, расположенной в фокальной точке нижнего зеркала, при этом зона расплава находится в фокальной точке верхнего зеркала, с регулировкой плотности светового потока, попадающего на зону расплава, механическим или автоматическим перемещением шторок из нержавеющей стали, при постоянном давлении 3-4 бар и скорости передвижения штока с исходным материалом в вертикальном направлении 7-9 мм/час, при этом осуществляют вращательное движение как штока с исходным материалом, так и штока с затравочным материалом, равное 2-4 об/мин и 1-2 об/мин соответственно, причем оба штока вращаются в разных направлениях. Изобретение обеспечивает получение монокристалла монооксида ниобия стехиометрического состава NbO1.00, который имеет стабильную упорядоченную структуру, содержит только одну фазу, обладает минимальной дефектностью. Материал характеризуется стабильностью свойств, сохраняя свои свойства при высокотемпературных воздействиях. 3 ил.

Изобретение относится к технологии получения нанотубулярного диоксида титана (TiO2-НТ) с повышенной фотокаталитической активностью анодированием. Способ получения фотокатализатора на основе нанотубулярного диоксида титана включает процесс анодирования титана во фторсодержащем растворе этиленгликоля при напряжении 10-120 В. В качестве катода используют коррозионностойкую сталь. Анодирование производят в течение 120 мин, отжиг полученного аморфного слоя проводят на воздухе в течение 1 ч при температуре от 300 до 600 °С. Длительность процесса сокращена в 9 раз за счет подбора условий анодирования – химического состава электролита, материала катода, напряжения и температуры среды. Исходная шероховатость промышленной титановой фольги марки ВТ1-0 допустима для получения равномерного оксидного слоя из нанотрубок диоксида титана, поэтому отсутствует необходимость механической полировки при подготовке титана к анодированию. 1 з.п. ф-лы, 4 ил., 2 пр.

Изобретение относится к области получения биологически активных фармацевтических и медицинских материалов. Предложен биоактивный композиционный материал на основе гидроксиапатита, в котором диспергирован монооксид титана. Материал содержит в качестве монооксида титана сверхстехиометрический монооксид титана TiO1,22 при следующем соотношении компонентов, мас.%: гидроксиапатит – 77-79, монооксид титана TiO1,22 – 21-23. Предложенный биоактивный композиционный материал обладает дезинфицирующей способностью наряду с высокой микротвердостью и может применяться для реконструкции и замещения участков костной ткани, протезирования фрагментов опорно-двигательного аппарата. 1 табл., 2 пр., 2 ил.

Группа изобретений относится к медицине. Описан биорезорбируемый материал, включающий гидроксиапатит и монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего. Описан способ получения биорезорбируемого материала, включающий получение исходной смеси компонентов, сушку, прессование и последующий отжиг, при этом исходную смесь получают путем фрагментации порошка гидроксиапатита и порошка монооксида титана в течение 460-480 мин с реверсом направления через каждые 15 мин и скоростью вращения 530-540 об/мин в среде изопропилового спирта, взятого в количестве 5-10 мл, а обжиг осуществляют при температуре 580-600°С в течение 350 – 360 мин со скоростью нагрева 100 – 110°С/ч. Биорезорбируемый материал имеет высокую микротвердость и может быть использован для реконструкции и замещения участков костной ткани. 2 н.п. ф-лы, 1 табл., 4 ил., 4 пр.

 


Наверх