Патенты автора Котляр Пётр Ефимович (RU)

Изобретение относится к области измерительной техники и касается матричного приемника инфракрасного и терагерцового излучения. Приемник включает в себя корпусную шайбу с входным и выходным окнами, в которой расположена матрица плотноупакованных трубчатых элементов, содержащих поглощающую металлическую пленку. Входное окно выполнено прозрачным, а выходным окном является подложка матрицы интегральных электронных усилителей. Матрица трубчатых элементов, служащих газовыми рабочими камерами, выполнена в виде трех блоков из фотоситала. Выход каждой камеры закрыт подвижным жидкостным поршнем, несущим электрический заряд, и согласован с затвором электронного усилителя. Металлический поглощающий слой расположен между нижним и средним блоками матрицы, пространство между поверхностями жидкостных поршней и матрицей усилителей образует компенсационную камеру, заполненную газом, в которой по внутреннему периметру шайбы установлен ультразвуковой возбудитель. Технический результат заключается в обеспечении возможности анализа излучения в реальном масштабе времени, повышении чувствительности и снижении весогабаритных характеристик устройства. 1 ил.

Изобретение относится к области электронно-оптического приборостроения и касается электронно-оптического преобразователя с автоэиссионным фотокатодом. Электронно-оптический преобразователь включает в себя вакуумированную колбу, входное окно, прозрачное в инфракрасной области спектра, фотокатод, расположенный на внутренней поверхности входного окна, микроканальный усилитель и устройство регистрации двумерного электронного изображения. В качестве катода используется автоэмиссионный фотокатод, выполненный в планарной технологии в виде матричного пироэлектрического слоя из отдельных дискретных элементов, на которые нанесены автоэмиссионные излучатели, выполненные на основе углеродных наноструктурированных материалов. Предпороговое поле автоэмиссии обеспечивается в промежутке «катод-микроканальный усилитель» напряжением источника питания, а управление потоком электронов эмиссии катода осуществляется пироэлектрическим слоем за счет дополнительного поля, создаваемого пространственным распределением потенциалов на этом слое, при изменении температуры пироэлектрического материала в результате поглощении им входного инфракрасного излучения. Технический результат заключается в расширении длинноволновой границы спектрального диапазона и повышением чувствительности устройства. 1 ил.

 


Наверх