Патенты автора Демидов Николай Николаевич (RU)

Изобретение относится к области промышленной безопасности, а более конкретно к способам определения аномалий в киберфизической системе. Технический результат заключается в повышении точности обнаружения аномалий в КФС. Согласно варианту реализации используется реализуемый компьютером способ определения аномалии в киберфизической системе (КФС), в котором: формируют по меньшей мере одно диагностическое правило, предназначенное для вычисления по меньшей мере одного вспомогательного параметра КФС, путем задания: набора параметров КФС, используемых в диагностическом правиле; способа вычисления значений по меньшей мере одного вспомогательного параметра КФС по данным значений набора параметров КФС; по меньшей мере одного входного окна – интервала времени для значений набора параметров КФС, а также выходного окна – интервала времени для вычисления значений вспомогательного параметра КФС; вычисляют значения по меньшей мере одного вспомогательного параметра КФС за выходное окно, используя значения набора параметров КФС за входное окно в соответствии со сформированным диагностическим правилом; определяют аномалию в КФС на основании значений всех параметров КФС. 11 з.п. ф-лы, 8 ил.

Изобретение относится к области промышленной безопасности, а более конкретно к способам диагностики и мониторинга аномалий в кибер-физической системе. Технический результат заключается в обеспечении автоматизации диагностики и мониторинга аномалий в КФС. Технический результат достигается за счет способа диагностики и мониторинга аномалий в кибер-физической системе (КФС), который реализован на аппаратном процессоре компьютерной системы и содержит инструкции, согласно которым получают информацию о выявленных аномалиях в КФС, при этом упомянутая информация включает перечень параметров КФС, включающих технологические параметры КФС, и их значений; формируют классифицирующие признаки для выявленных аномалий на основании собранной информации; выполняют классификацию выявленных аномалий по меньшей мере на два класса на основании сформированных классифицирующих признаков; осуществляют диагностику аномалий каждого класса путем расчета значений характеристик каждого класса аномалий; осуществляют мониторинг аномалий каждого класса по данным значений характеристик каждого класса. 11 з.п. ф-лы, 10 ил.

Изобретение относится к способу и системе определения источников аномалии в кибер-физической системе (КФС). Технический результат заключается в определении источников аномалии в кибер-физической системе. В способе с помощью средства прогнозирования получают значения признаков КФС за входное окно, являющееся интервалом времени и содержащееся внутри периода наблюдений, при этом входное окно определяется обученной моделью прогнозирования, при этом признаки КФС являются численными характеристиками субъектов управления; с помощью средства прогнозирования с использованием обученной модели прогнозирования и по данным полученных значений признаков КФС за входное окно выполняют прогнозирование значений признаков КФС на окно прогноза, являющееся интервалом времени и содержащееся внутри периода наблюдений; с помощью средства определения аномалий для окна прогноза определяют общую ошибку прогноза для признаков КФС; с помощью средства определения аномалий при превышении общей ошибкой прогноза порога общей ошибки, определяют аномалию в КФС; с помощью средства определения аномалий определяют по меньшей мере один признак КФС, являющийся источником аномалии, если вклад ошибки прогноза упомянутого по меньшей мере одного признака КФС в общую ошибку прогноза выше, чем вклад по меньшей мере одного другого признака КФС в общую ошибку прогноза. 2 н. и 9 з.п. ф-лы, 21 ил.

Изобретение относится к области компьютерной безопасности. Технический результат заключается в обеспечении автоматизированного контроля кибер-физической системы для раннего определения аномалий. Такой результат достигается тем, что с помощью элемента графического интерфейса пользователя (ГИП) для выбора признака, содержащего, в частности, список признаков кибер-физической системы (КФС), принимают информацию о выбранном пользователем по меньшей мере одном признаке КФС из списка признаков, принимают информацию о выбранном пользователем периоде времени мониторинга за выбранными признаками КФС, формируют за период времени мониторинга прогноз значений признаков КФС с помощью модели прогнозирования значений выбранных признаков КФС, определяют за период времени мониторинга общую ошибку прогноза для всех признаков КФС из списка признаков и ошибки прогноза для каждого выбранного признака КФС, формируют за период времени мониторинга графики для значений данных, сформированных средством прогнозирования и средством определения аномалий. 2 н. и 11 з.п. ф-лы, 20 ил.

Изобретение относится к области вычислительной техники. Техническим результатом является обеспечение обучения модели прогнозирования значений признаков кибер-физической системы (КФС) и вычисления порога ошибки для определения аномалии в КФС. Раскрыт реализуемый компьютером способ обучения модели прогнозирования значений признаков кибер-физической системы (КФС) и вычисления порога ошибки для определения аномалии в КФС, в котором: а) с использованием средства обучения получают исходную выборку, содержащую значения признаков КФС за исторический период наблюдения за КФС, в которой доля аномалий не превышает заданное значение, при этом признаки КФС являются численными характеристиками субъектов управления; б) с использованием средства обучения на основании исходной выборки и с учетом характеристик КФС формируют обучающую выборку, включающую значения по меньшей мере одного из упомянутых признаков КФС, за период наблюдения, который содержится в историческом периоде наблюдения; в) с использованием средства обучения выполняют построение модели прогнозирования значений признаков КФС в каждый момент времени окна прогноза по данным значений упомянутых признаков КФС в каждый момент времени входного окна, при этом входное окно и окно прогноза являются интервалами времени, содержащимися внутри периода наблюдения, и, кроме того, упомянутые входное окно и окно прогноза выбирают в зависимости от характеристик КФС, а расстояние между входным окном и окном прогноза равно горизонту прогноза, который выбирают в зависимости от характеристик КФС; г) с использованием средства обучения выполняют обучение модели прогнозирования на данных обучающей выборки; д) с использованием обученной модели прогнозирования с использованием средства вычисления выполняют прогнозирование значений признаков КФС в каждый момент времени периода наблюдения; е) с использованием средства вычисления определяют общую ошибку прогноза, полученного с использованием построенной модели прогнозирования в каждый момент времени периода наблюдения; ж) с использованием средства обучения вычисляют порог общей ошибки в зависимости от характеристик КФС таким образом, что превышение вычисленного порога общей ошибкой прогноза означает аномалию в КФС. 2 н. и 22 з.п. ф-лы, 21 ил.

Изобретение относится к механическим вальным коробкам передач с несколькими промежуточными параллельными валами и зубчатыми колесами. 18-скоростная коробка передач содержит параллельно установленные в картере ведущий (0), промежуточные (A, B и C) и грузовой (X) валы с установленными на них шестернями (Z1-Z19) и гидроподжимными фрикционными муфтами (Ф1-Ф8). Имеется также реверсирующее устройство с муфтой зубчатой (ЗМ) или гидроподжимной фрикционной (Ф9). Этим обеспечена возможностью получения 18 передач переднего хода без диапазонов и 9 передач заднего хода путем включения по три фрикционные муфты в соответствующих сочетаниях их номеров. Изобретение позволяет улучшить технико-эксплуатационные характеристики и возможности КП. 6 з.п. ф-лы, 2 ил.

 


Наверх