Патенты автора Мартынович Евгений Фёдорович (RU)

Изобретение относится к фотографическим материалам с люминесцентной визуализацией скрытого изображения и может быть использовано при изготовлении оптических носителей информации, художественной сувенирной и демонстрационной продукции, а также в научных исследованиях о механизмах взаимодействия света и вещества. Нелинейный фотографический материал состоит из хлорида калия и активирующей добавки сернокислого таллия, массовая доля которого составляет 2%. Нелинейный фотографический материал имеет монокристаллическую структуру, структуру оптической керамики или мелкодисперсную структуру с частицами нано - микрометрового размера. Под действием лазерного излучения в нём образуются центры фотолюминесценции - облучённые каналы 2, излучающие в красной области спектра при комнатной температуре, что расширяет спектральный диапазон визуализации скрытого изображения. В необлучённой области 1 люминесценция не наблюдается. 4 з.п. ф-лы, 2 ил.

Изобретение относится к нелинейным фотографическим люминесцентным материалам и может быть использовано для производства носителей информации. Нелинейный фотографический люминесцентный материал на основе щелочно-галоидного соединения, в котором под действием лазерного излучения образуются центры фотолюминесценции, при этом в качестве щелочно-галоидного соединения используется хлористый калий с активирующей добавкой азотнокислого таллия. Техническим результатом является создание нового нелинейного фотографического люминесцентного материала и снижение степени нелинейности его взаимодействия с лазерным излучением, образующим в нем центры люминесценции. 3 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области технической физики и касается способа определения ориентации квантовых систем в кристаллах. Способ включает в себя возбуждение фотолюминесценции квантовых систем образца излучением, волновой вектор которого ориентирован перпендикулярно оптической оси кристалла, ее регистрацию с пространственным разрешением вдоль волнового вектора, измерение глубины пространственной модуляции интенсивности люминесценции. Направление наблюдения люминесценции выбирают перпендикулярным оптической оси и волновому вектору. Вращая образец относительно оптической оси, находят его положение, в котором глубина модуляции равна нулю, и фиксируют это направление. Затем образец поворачивают относительно оптической оси в положение, соответствующее максимуму глубины модуляции люминесценции, и в этом положении измеряют зависимость глубины модуляции от угла между оптической осью кристалла и направлением электрического вектора возбуждающего излучения. Находят величину угла, соответствующего максимуму этой зависимости, и по этой величине с помощью градуировочного графика определяют угол ориентации квантовых систем по отношению к оптической оси кристалла. Технический результат заключается в обеспечении возможности однозначного определения ориентации квантовых систем в одноосных кристаллах. 8 ил.

 


Наверх