Патенты автора Лобов Дмитрий Анатольевич (RU)

Изобретение относится к области эксплуатации газотурбинных установок, а именно к диагностике температурного состояния деталей для принятия решения по их обслуживанию и дальнейшей эксплуатации. Способ эксплуатации газотурбинной установки включает диагностику температурного состояния деталей. Измеряют температуру масла на сливе из каждой опоры роторов газотурбинной установки на неизменном режиме по частотам вращения роторов на базе времени не менее 2-х минут, предшествующих текущему измерению, вычисляют среднее значение температуры масла на сливе и сравнивают его с текущим значением при тех же частотах вращения. При отклонении текущего значения температуры масла на сливе более чем на 2°С формируют сигнал об изменении технического состояния деталей в конкретной опоре ротора. При снижении текущего значения температуры масла на сливе формируют сигнал о разрушении коллектора подвода масла к подшипнику в опоре. При повышении температуры масла на сливе формируют сигнал о разрушении подшипника в опоре. Способ позволяет определить детали в конкретной опоре двигателя, в которых происходит изменение технического состояния на стадии допустимого времени эксплуатации без разрушения деталей двигателя, что повышает эксплуатационную экономичность газотурбинного двигателя. 2 з.п. ф-лы, 1 табл.

Изобретение относится к области эксплуатации газотурбинных установок, а именно к оценке технического состояния установок или ее отдельных узлов для принятия решения по их обслуживанию и дальнейшей эксплуатации установки. Способ эксплуатации газотурбинной установки включает оценку ее технического состояния по изменению характеристик рабочих режимов. На по крайней мере одной из исправных газотурбинных установок фиксируют в заданном диапазоне частот вращения роторов зависимости изменения частоты вращения n от времени τ на выбеге роторов при не менее двух остановах газотурбинной установки, по усредненным значениям формируют типовые зависимости изменения частот вращения роторов n от времени τ, фиксируют текущие зависимости этих параметров для конкретной газотурбинной установки, сравнивают с типовыми зависимостями, при отклонении текущих зависимостей по конкретному ротору от типовых более чем на 5% формируют сигнал об изменении технического состояния конкретного ротора. Типовую зависимость изменения частот вращения роторов от времени формируют для конкретной газотурбинной установки на начальном этапе ее эксплуатации. Дополнительно типовую зависимость изменения частоты вращения от времени разбивают на 2-3 участка, на которых определяют значения Δn/Δτ, фиксируют на этих участках текущие значения Δn/Δτ, при отклонении текущих значений от типовых более чем на 5% хотя бы на одном участке формируют сигнал об изменении технического состояния конкретного ротора. Ожидаемый технический результат - определение узлов в газотурбинной установке, в которых происходит изменение технического состояния на стадии допустимого времени эксплуатации без разрушения деталей газотурбинной установки, что повышает ее эксплуатационную экономичность. 2 з.п. ф-лы, 3 ил.

Изобретение относится к областям, где имеют место процессы смесеобразования и сжигания «бедных» смесей жидких или газообразных топлив и воздуха. Сущность изобретения заключается в том, что высокое качество «бедной» смеси газообразного или жидкого топлива и воздуха обеспечивают за счет их двухступенчатого предварительного смешения: струйного смешения компонентов и дополнительного пропускания образовавшейся смеси через проницаемый элемент; в основной циркуляционной зоне сжигают предварительно подготовленную высококачественную «бедную» смесь основного газообразного или жидкого топлива и воздуха, поддерживая в ней концентрацию топлива гораздо меньше нижнего концентрационного предела распространения пламени, а устойчивость горения «бедной» смеси обеспечивают за счет тепла дополнительной циркуляционной зоны, в которой пилотное газообразное топливо сжигают диффузионно. Причем относительный расход пилотного газообразного топлива, определяемый как отношение расхода пилотного газообразного топлива к сумме расходов пилотного газообразного топлива и основного газообразного или жидкого топлива, уменьшают с увеличением начальной температуры «бедной» смеси независимо от расхода основного газообразного топлива или жидкого топлива; применяют пленочное охлаждение выходного торца полого конического стабилизатора пилотного контура горелки, используя хладоресурс вспомогательного воздуха, а также жидкого и пилотного газообразного топлива; устанавливают пористую пластину, на поверхности которой наносят медный или платиновый катализаторы, и др. технические решения. Технический результат - снижение эмиссии оксидов азота, экономия топлива, увеличение ресурса работы горелки, предотвращение отложений сажи в основании усеченного полого конуса. 9 з.п. ф-лы, 14 ил.

Изобретение относится к удаленному мониторингу. Система удаленного мониторинга газотурбинной установки содержит датчики, передающие информацию об эксплуатационных параметрах установки на сервер нижнего уровня, который хранит и передает информацию на сервер верхнего уровня. Сервер нижнего уровня включает блок математической обработки, базу данных истории эксплуатации, блок сравнения, блок автоматики, блок журнала предупреждений. Сервер верхнего уровня представляет собой графический интерфейс, в котором содержатся логический блок трендового контроля эксплуатационных параметров; логический блок оценки технического состояния; логический блок трендов зависимостей; логический блок анализа трендов; логический блок карты параметров; логический блок журнала предупреждений; логический блок мнемосхемы газотурбинной установки; логический блок показателей газотурбинной установки. Повышается оперативность контроля. 3 ил.

Группа изобретений относится к нефтегазовой области. Газоперекачивающий агрегат (ГПА) содержит последовательно сообщенные по рабочему телу тракт всасывания воздуха, газотурбинную установку с входным устройством для подачи воздуха из камеры всасывания воздуха на вход в ГТД, тракт выхлопа отработанных газов, сообщенный газоходом с газоотводом ГПА и выхлопной трубой, а также газовый компрессор. Выхлопная труба сообщена с теплообменником. Газоход выполнен в виде трубы, включающей основной горизонтальный и переходные участки. Первый переходной участок выполнен наклонным, с прямоугольным сечением на входе и имеет форму корпуса, трансформирующуюся по длине до окружности на выходе в плоскости сопряжения со вторым участком, представляющим криволинейный отвод, создающим угол βп.т.г. поворота трубы газохода и сообщенным с третьим участком. Основной участок выполнен с составным поперечным сечением проточной части и обрамлен по торцам зеркально идентичными третьим и четвертым участками переменной формы. Основной участок газохода образован из двух боковых дуг окружности, соединенных плоскими прямолинейными вставками. При этом основной и переходные участки выполнены с соблюдением условия равенства площадей поперечного сечения проточной части. Выхлопная труба ГПА включает опорный блок, приемную камеру, блок шумоглушения, конфузор и газоход шахты. Каждая секция блока шумоглушения наделена не менее чем тремя элементами шумоглушения, выполненными каждый в виде опрокинутого вершиной вниз тетраэдра с двумя прямоугольными гранями и основанием. Основание элемента шумоглушения раскреплено стержневым каркасом. Ребро между гранями выполнено длиной, соизмеримой с высотой шумогасящей секции. Совокупность элементов шумоглушения в секции выполнена с винтовым смещением относительно предыдущей секции. Технический результат состоит в повышении надежности, эффективности и ресурса работы ГПА за счет улучшения конструктивных, аэродинамических и энергетических параметров составляющих тракта выхлопа ГПА. 5 н. и 5 з.п. ф-лы, 7 ил.

Группа изобретений относится к нефтегазовой области. Газоперекачивающий агрегат (ГПА) содержит последовательно сообщенные по рабочему телу: тракт всасывания воздуха, включающий КВОУ, всасывающий воздуховод и двухсекционную камеру всасывания воздуха; газотурбинную установку с входным устройством для подачи воздуха из камеры всасывания воздуха на вход в ГТД, тракт выхлопа отработанных газов, газовый компрессор и систему охлаждения ГТД. Воздуховод выполнен в виде составной цилиндрической трубы, состоящей из основного и переходного участков и двух оголовков. Первый оголовок установлен на входе в воздуховод, наделен функцией переходной камеры и имеет форму усеченного параллелепипеда. Переходный участок воздуховода выполнен криволинейным с понижением к основному горизонтальному участку воздуховода. Второй оголовок установлен на выходе воздуховода и совмещен на проток с нижней секцией камеры всасывания. Верхняя секция камеры всасывания размещена над воздуховодом и на выходе сообщена с входным устройством ГТД. Панель пола-перекрытия между секциями выполнена в виде решетки с коэффициентом аэродинамической прозрачности Ка.п. панели пола, удовлетворяющим условию Ка.п.=(0,62÷0,87). Нижняя секция выполнена в виде лотка составной дугообразной формы с вершиной, обращенной вниз, и снабженного аэродинамическим экраном, изменяющим направление потока рабочего тела. В верхней секции установлена раздвижная листовая створка, состоящая из двух половинок с центральным отверстием для прохода раструба входного устройства. Технический результат группы изобретений состоит в повышении надежности, эффективности и ресурса работы ГПА за счет улучшения конструктивных, аэродинамических и энергетических параметров составляющих тракта всасывания воздуха. 5 н. и 5 з.п. ф-лы, 5 ил.

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности к двигателям, применяемым в качестве привода газоперекачивающих агрегатов и энергоустановок. Способ работы газотурбинной установки, включающий подачу топлива в дежурные и основные горелочные устройства на различных режимах, заключающийся в том, что при запуске газотурбинной установки и выходе на режим малого газа в первую часть дежурных горелочных устройств подают в качестве топлива природный газ, после выхода установки на режим малого газа при дальнейшем увеличении мощности газотурбинной установки в оставшуюся вторую часть дежурных горелочных устройств подают метано-водородную смесь, а перед выходом на режим холостого хода, включают подачу метано-водородной смеси в первую часть дежурных горелочных устройств, при этом синхронно снижают расход природного газа в последние, вплоть до прекращения его подачи, также перед выходом на режим холостого хода начинают подачу топлива в виде природного газа в основные горелочные устройства. Изобретение обеспечивает снижение уровня выброса вредных веществ, за счет подачи метано-водородной смеси в дежурные и основные горелки камеры. 3 з.п. ф-лы, 2 ил.

Группа изобретений относится к нефтегазовой области. Газоперекачивающий агрегат (ГПА) содержит последовательно сообщенные по рабочему телу: тракт всасывания воздуха, газотурбинную установку с входным устройством для подачи воздуха из камеры всасывания воздуха на вход в ГТД, тракт выхлопа отработанных газов, газовый компрессор и систему охлаждения ГТД. Входное устройство включает трубу с аэродинамическим входным насадком, имеющим раструб с конфигурацией продольного сечения типа фрагмента лемнискаты с градиентом Gвx.н убывания площади поперечного сечения проточной части на длине насадка от Fmax п.ч до Fmin п.ч, определенным в диапазоне значений Gвx.н =(1,15÷1,58) [м2/м]. Труба ВУ выполнена сборной и включает проставки, герметично соединенные через фланцы, и опорные кольца для крепления к опорному комплексу. Опорной комплекс включает размещенную под трубой ВУ направляющую балку, регулируемо соединенную одним концом через талреп с опорной рамой. Передним концом балка подвижно оперта на неподвижную стойку, которая снабжена в верхней части опорным колесом с возможностью осевых монтажных и эксплуатационных перемещений трубы ВУ. Технический результат группы изобретений состоит в повышении надежности, эффективности и ресурса работы ГПА за счет улучшения конструктивных, аэродинамических и энергетических параметров входного устройства. 5 н. и 5 з.п. ф-лы, 10 ил.

Газоперекачивающий агрегат (ГПА), газоход тракта выхлопа ГПА и входной узел газохода тракта выхлопа ГПА. Группа изобретений относится к нефтегазовой области. ГПА содержит последовательно сообщенные по рабочему телу: тракт всасывания воздуха, включающий КВОУ, всасывающий воздуховод и камеру всасывания воздуха; газотурбинную установку с входным устройством для подачи воздуха из камеры всасывания воздуха на вход в ГТД, тракт выхлопа отработанных газов, газовый компрессор. Газоход выполнен в виде трубы, включающей основной горизонтальный и переходные участки. Во входном узле тракта выхлопа первый участок выполнен наклонным с прямоугольным сечением на входе и имеет форму корпуса, трансформирующуюся по длине до окружности на выходе в плоскости сопряжения со вторым участком, представляющим криволинейный отвод, создающим угол поворота трубы газохода. Основной участок выполнен с составным поперечным сечением проточной части и обрамлен по торцам зеркально идентичными третьим и четвертым участками переменной формы. Основной участок газохода образован из двух боковых дуг окружности, соединенных поверху и понизу плоскими прямолинейными вставками. При этом основной и переходные участки выполнены с соблюдением условия равенства площадей поперечного сечения проточной части. Технический результат группы изобретений состоит в повышении надежности, эффективности и ресурса работы ГПА за счет улучшения конструктивных, аэродинамических и энергетических параметров газохода тракта выхлопа ГПА. 3 н. и 4 з.п. ф-лы, 5 ил.

Группа изобретений относится к нефтегазовой области. В способе охлаждения ГТД ГПА двигатель снабжают защитным кожухом, к которому подводят нагнетающий и отводящий воздуховоды. Воздух забирают из атмосферы через воздухозаборник и подают снизу в кожух. Через распределительный короб до 20% подаваемого воздуха подают за улиточное пространство газоотвода ГТУ ГПА. Остальную часть воздуха подают непосредственно под корпус двигателя. Отклонения струй воздуха, подаваемых на боковые участки корпуса двигателя, производят направляющим аппаратом с наклоненными неподвижными в процессе охлаждения двигателя створками. Створки выполнены с аэродинамическим профилем и регулируемо закреплены на силовом элементе. Количество створок принято не менее двух с каждой стороны двигателя. Створки попарно устанавливают в пределах каждой группы однонаправленно отклоненными с зеркальной симметрией наклона ответной группы створок. Процесс регулирования положения створок осуществляют шаговым изменением угла αа.с.. атаки. Для чего в поперечном сечении створки выделяют две точки. Одну точку наделяют функцией шарнира вращения с ограниченным углом поворота в пределах принятого диапазона угловых положений створки. Через другую точку проводят радиальный индикатор угла атаки, численно определяемого по шкале с заданным шагом угловых положений створки. Затем выставляют остальные створки, включают воздушный поток и производят равномерное охлаждение работающего двигателя. Технический результат, достигаемый группой изобретений, состоит в снижении окружной неравномерности температуры поверхности двигателя, повышении ресурса и надежности на всех режимах работы ГТД в составе ГПА. 4 н. и 6 з.п. ф-лы, 6 ил., 1 табл.

Изобретение относится к термометрии и может быть использовано для измерения быстропротекающих высокотемпературных процессов в газодинамике и построения систем автоматического регулирования температуры газов газотурбинного двигателя. Предложена дифференциальная система измерения температуры газов газотурбинного двигателя, содержащая блок обработки информации 3 и два канала измерения 1 и 2, каждый из которых имеет струйный генератор 4, пьезоэлектрический преобразователь 5, электронно-перестраиваемый фильтр 6 с переключателем типа датчика 12, компаратор фаз 7, ключ 8, одновибратор 10, преобразователь напряжение-код 13, генератор пилообразного напряжения 9, выход которого соединен с управляющим входом электронно-перестраиваемого фильтра 6 и преобразователя напряжение-код 13 через инвертор 11. Технический результат - повышение точности и надежности устройства. 1 табл., 2 ил.

 


Наверх