Патенты автора Швецов Иван Александрович (RU)

Изобретение относится к области очистки природных пресных вод из подземных и поверхностных источников от соединений железа, марганца, солей жёсткости, сероводорода, органических соединений и может быть использовано для получения воды питьевого качества. Способ включает обработку воды пероксидом водорода, с добавкой водорастворимых соединений титана с последующей аэрацией и физической обработкой. Доза пероксида водорода составляет 3,0–5,0 мг/л, доза соединений титана 1,0–1,5 мг/л. Физическую обработку воды осуществляют посредством гидродинамической кавитации при скорости потока 23–32 м/с за один или два прохода через гидродинамический кавитатор, с последующей фильтрацией на керамическом мембранном фильтре. Изобретение обеспечивает снижение энергозатрат на процесс очистки, расширение спектра удаляемых из воды веществ - железо, растворенные органические вещества, и пр., и снижение остаточной концентрации соединений титана в очищенной воде. 3 пр.

Складной перископ содержит по крайней мере три колена, каждое из которых выполнено в виде цилиндрического корпуса. С одной стороны первого колена расположено верхнее наклонное зеркало, а с другой - запирающий механизм, с помощью которого к нему прикреплено второе колено. С помощью второго запирающего механизма к другой стороне второго колена прикреплено третье колено, внутри которого расположена оборачивающая система, а с другой стороны третьего колена - окуляр, между которыми расположена оправа с нижним наклонным зеркалом. Перископ содержит объектив, расположенный в первом колене, во втором колене расположена сетка. Корпуса колен снабжены выступами и вырезами, при складывании перископа входящими друг в друга, ограничивающими тем самым самопроизвольное разложение перископа в походном положении. Технический результат - повышение безопасности наблюдателя, возможность быстрого и удобного приведения перископа из эксплуатационного в походное положение и удобство его переноса. 3 ил.

Изобретение относится к техническим средствам измерения расстояния до объектов с источниками лазерного излучения и может быть использовано в оптических наблюдательных приборах, прицелах-дальномерах и других устройствах. Лазерный дальномер содержит модуль лазерного излучателя, модуль приемника, модуль сбора и обработки данных и модуль дисплея. Модуль лазерного излучателя состоит из полупроводникового лазера с присоединенным к нему модулятором, первого объектива, установленного последовательно по ходу луча. Модуль приемника установлен параллельно с модулем лазерного излучателя и состоит из последовательно установленных по ходу луча второго объектива, фотодиода модуля приемника с присоединенным к нему усилителем модуля приемника. Модуль сбора и обработки данных и модуль дисплея установлены в лазерном дальномере так, что выход модуля сбора и обработки данных связан со входом модуля дисплея. Модулятор расположен в модуле лазерного излучателя так, что первый выход модулятора связан со входом полупроводникового лазера, расположенного перед оптически связанным с ним первым объективом, второй выход модулятора связан с первым входом модуля сбора и обработки данных. В модуле приемника второй объектив оптически связан с фотодиодом модуля приемника, расположенным так, что выход фотодиода модуля приемника связан со входом усилителя модуля приемника, выход усилителя модуля приемника связан со вторым входом модуля сбора и обработки данных. В модуле приемника также установлены дополнительный фотодиод модуля приемника, дополнительный усилитель модуля приемника, первая фазовая пластинка и первый светоделитель с отражающей гранью, расположенный между вторым объективом и фотодиодом модуля приемника. В модуле лазерного излучателя установлены фотодиод модуля лазерного излучателя, усилитель модуля лазерного излучателя, вторая фазовая пластинка и второй светоделитель с отражающей гранью, расположенный между первым объективом и полупроводниковым лазером. Первая фазовая пластинка установлена между вторым объективом и первым светоделителем, отражающая грань которого оптически связана с дополнительным фотодиодом модуля приемника. Выход дополнительного фотодиода модуля приемника связан со входом дополнительного усилителя модуля приемника, выход которого в свою очередь связан с третьим входом модуля сбора и обработки данных. Вторая фазовая пластинка установлена между первым объективом и вторым светоделителем, отражающая грань которого оптически связана с фотодиодом модуля лазерного излучателя. Выход фотодиода модуля лазерного излучателя связан со входом усилителя модуля лазерного излучателя, выход которого в свою очередь связан с четвертым входом модуля сбора и обработки данных. При этом чувствительная площадка дополнительного фотодиода модуля приемника расположена в фокальной плоскости второго объектива, чувствительная площадка фотодиода модуля лазерного излучателя расположена в фокальной плоскости первого объектива, плоскость поляризации излучения полупроводникового лазера совмещена с плоскостями, перпендикулярными отражающим граням первого и второго светоделителей, а оптические оси первой и второй фазовых пластинок ориентированы под углом 45° к плоскости. Технический результат – повышение энергетического потенциала лазерного дальномера. 1 ил.

 


Наверх