Патенты автора Полуботко Анна Александровна (RU)

Изобретение относится к способам измерения расстояний с использованием радиоволн и может быть использовано для дистанционного мониторинга местоположения транспортных средств (ТС), движущихся по известным траекториям. Достигаемый технический результат - повышение точности определения текущих координат (позиционирования) транспортных средств и возможность реализации дистанционного мониторинга их позиционирования при отсутствии на борту транспортного средства навигационного вычислителя, в том числе, при уменьшении числа видимых навигационных спутников до двух. Указанный результат достигается за счет снижения уровня помех, обусловленных различными факторами, при сокращении состава спутниковой группировки до двух спутников. 1 ил.

Изобретение относится к средствам вычислительной техники и оптическим устройствам обработки информации. Оптический нановычислитель в системе остаточных классов состоит из двух оптических наноусилителей, нановолоконного оптического объединителя, оптического вычитающего наноустройства и оптического порогового наноустройства. Первый вход оптического вычитающего наноустройства является первым входом устройства (входом делимого). Вход первого оптического наноусилителя является вторым входом устройства (входом делителя). Первый выход первого оптического наноусилителя подключен к первому входу нановолоконного оптического объединителя. Второй выход первого оптического наноусилителя подключен к второму входу оптического порогового наноустройства. Выход нановолоконного оптического объединителя подключен к входу второго оптического наноусилителя. Первый выход второго оптического наноусилителя подключен к второму входу оптического вычитающего наноустройства. Второй выход второго оптического наноусилителя подключен к второму входу нановолоконного оптического объединителя. Выход оптического вычитающего наноустройства подключен к первому входу оптического порогового наноустройства. Выход оптического порогового наноустройства является выходом устройства. Технический результат заключается в реализации назначения, высоком быстродействии и возможности наноразмерного исполнения оптического нановычислителя. 2 ил.

Изобретение относится к измерительной технике и может быть использовано при решении задач навигации, управления, гравиметрии. Акселерометр содержит последовательно соединенные пьезоэлектрический преобразователь, N-разрядный аналого-цифровой преобразователь, микроконтроллер, N-разрядный цифроаналоговый преобразователь, электромагнит, пробную массу. Технический результат – упрощение измерения кажущегося ускорения и расширение диапазона его измерения. 1 ил.

Изобретение относится к способам навигации и может быть использовано для повышения точности определения местоположения транспортных средств (ТС), движущихся по известным траекториям. Способ позиционирования транспортных средств заключается в том, что до начала движения ТС на основании картографической информации известная траектория движения ТС разбивается на участки, аппроксимируемые с заданной точностью ортодромическими отрезками, на которых существует функциональная связь между геоцентрическими координатами, позволяющая выразить две координаты через третью. При движении ТС по известной траектории измеренные навигационной системой текущие геоцентрические координаты ТС проецируются на истинную ортодромическую траекторию движения ТС. При этом координаты точки проекции определяются с учетом связи между геоцентрическими координатами на ортодромии и решения иррационального уравнения относительно одной из координат, полученного из условия минимума длины ортодромического отрезка между точкой с измеренными координатами ТС и точкой проекции на истинную ортодромическую траекторию его движения, координаты которой принимаются за истинные текущие геоцентрические координаты ТС. Технический результат – повышение точности определения текущих координат ТС за счет исключения ошибок измерения, приводящих к отклонению от истинной траектории движения ТС. 1 ил.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики. Техническим результатом является создание устройства, вычисляющего операцию компромиссности непрерывной (нечеткой) логики в реальном масштабе времени. Устройство содержит источник когерентного излучения, оптический трехвыходной разветвитель, оптический амплитудный модулятор, два оптических фазовых модулятора, оптический Y-объединитель, группу оптических Y-разветвителей, управляемый оптический транспарант, оптический трехвходной объединитель, 1 ил.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации при выполнении вычислений в системе остаточных классов. Техническим результатом является создание устройства, выполняющего в режиме реального времени вычисления в системе остаточных классов. Оптоэлектронный вычислитель содержит линейный источник когерентного излучения, оптический амплитудный модулятор, оптический n-входной объединитель, оптический фазовый модулятор, оптический Y-объединитель, оптический бистабильный элемент. 1 ил.

Изобретение относится к способам навигации по спутниковым радионавигационным системам и может быть использовано для выбора созвездия видимых навигационных спутников, обеспечивающего максимальную точность решения навигационной задачи подвижного объекта. Достигаемый технический результат - упрощение выбора созвездия видимых навигационных спутников, снижение вычислительных затрат и повышение точности решения навигационной задачи подвижных объектов. Указанный результат достигается за счет определения разностей углов обзора каждого спутника, входящего в группировку навигационных спутников, и дуги большого круга между объектом и геометрическим местом каждого видимого спутника с последующим выбором k≥4 наибольших значений этих разностей и соответствующих им k спутников, образующих искомое созвездие спутников. 1 ил.

Изобретение относится к способам измерения расстояний с использованием радиоволн и может быть использовано для дистанционного мониторинга местоположения транспортных средств. Достигаемый технический результат - повышение точности определения текущих координат (позиционирования) транспортных средств и возможность реализации дистанционного мониторинга их позиционирования при отсутствии на борту транспортного средства навигационного вычислителя. Указанный результат достигается за счет того, что спутниковые навигационные сообщения от N(N≥4) навигационных спутников передаются одновременно на первый приемник базовой станции, на выходе которого формируются кодовые измерения псевдодальности базовой станции от каждого спутника, и приемник транспортного средства (ТС), на выходе которого формируются кодовые измерения псевдодальности ТС от каждого спутника, которые передаются из приемника ТС в передатчик ТС, на выходе которого формируется сообщение, включающее кодовые измерения псевдодальностей ТС, идентификационный код ТС и метку времени передачи, которое передается по радиоканалу и принимается на базовой станции вторым приемником, с выхода которого принятые идентификационный код ТС и кодовые измерения псевдодальностей ТС, а также сформированные в нем кодовые измерения псевдодальности ТС до базовой станции вместе с выходными сигналами первого приемника базовой станции поступают на вход вычислителя базовой станции, где для каждого спутника формируется сумма кодовых измерений псевдодальностей ТС и ТС до базовой станции, из которой вычитаются кодовые измерения псевдодальности базовой станции и формируется уравнение невязки между полученной разностью и ее аналитическим выражением в геоцентрической системе координат, после чего из решения системы уравнений невязок для четырех спутников, выбранных из расчета геометрического фактора базовой станции, определяются текущая помеха измерения и текущие координаты ТС в геоцентрической системе координат, которые вместе с идентификационным кодом ТС поступают в передатчик базовой станции, с выхода которого с меткой времени поступают абоненту. 1 ил.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики. Техническим результатом является создание устройства, вычисляющего операцию компромиссности непрерывной (нечеткой) логики в реальном масштабе времени. Устройство содержит источник когерентного излучения, трехвыходной оптический разветвитель, четыре оптических амплитудных модулятора, оптический фазовый модулятор, три оптических Y-разветвителя, три оптических Y-объединителя, фотоприемник. 1 ил.

Изобретение относится к области обеспечения безопасности транспортных средств. Заявленный способ характеризуется тем, что принимают спутниковые навигационные сигналы и определяют скорость, направление движения транспортного средства. Считывают информацию с датчиков световой сигнализации и передают информацию другим транспортным средствам. Осуществляют построение схемы расположения транспортных средств, передающих свои навигационные параметры. При необходимости формируют сигнал, предупреждающий водителей об опасных ситуациях. Обеспечивается повышение эффективности средств обеспечения безопасности движения, расположенных на транспортных средствах. 1 ил.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики. Техническим результатом является создание устройства, вычисляющего операцию компромиссности непрерывной логики в реальном масштабе времени. Устройство содержит оптический Y-разветвитель, электрооптический модулятор, два фотоприемника, усилитель, источник излучения, двумерный электрооптический дефлектор, n групп по n равноудаленных оптических волноводов, матричный оптический транспарант размерности n×n, группу n оптических n-входных объединителей, оптический n-входной объединитель, оптический Y-объединитель. 1 ил.

Изобретение относится к средствам вычислительной техники. Оптический наносумматор по модулю два содержит два входных оптических нановолокна, две телескопические нанотрубки - внутреннюю и внешнюю, оптический нановолоконный Y-разветвитель и оптический нановолоконный объединитель. Причем информационными входами устройства являются входы первого и второго входных оптических нановолокон, выходы которых оптически связаны с торцами внутренней нанотрубки. Телескопические нанотрубки расположены между первым и вторым входными оптическими нановолокнами. Выход источника постоянного оптического сигнала подключен к входу оптического нановолоконного Y-разветвителя. При этом в крайнем левом положении внутренней нанотрубки отсутствует оптическая связь между первым выходом оптического нановолоконного Y-разветвителя и первым входом оптического нановолоконного объединителя, а в крайнем правом положении внутренней нанотрубки присутствует оптическая связь между первым выходом оптического нановолоконного Y-разветвителя и первым входом оптического нановолоконного объединителя, причем в центральном (исходном) положении внутренней нанотрубки отсутствуют оптические связи между выходами оптического нановолоконного Y-разветвителя и входами оптического нановолоконного объединителя, выход которого является выходом устройства. Технический результат заключается в повышении быстродействия и реализации наносумматора в наноразмерном исполнении. 1 ил.

Изобретение относится к средствам вычислительной техники. Оптический нанорегистр состоит из источника постоянного оптического сигнала, двух N-выходных нановолоконных оптических разветвителей, N телескопических нанотрубок, N нановолоконных оптических Y-разветвителей, N нановолоконных оптических объединителей. Информационными входами устройства являются первые входы нановолоконных оптических объединителей, входом сброса устройства является вход второго N-выходного нановолоконного оптического разветвителя. Выход источника постоянного оптического сигнала подключен к входу первого N-выходного нановолоконного оптического разветвителя, выходы которого оптически связаны с входами соответствующих нановолоконных оптических Y-разветвителей. Между выходами нановолоконных оптических объединителей и соответствующими выходами второго N-выходного нановолоконного оптического разветвителя расположены телескопические нанотрубки. Технический результат заключается в реализации регистратора в наноразмерном исполнении. 1 ил.

 


Наверх