Патенты автора Бахия Тамуна (RU)

Изобретение относится к способу электродиализного опреснения соленой воды, включающему использование пакета чередующихся катионитных и анионитных ионообменных мембран, расположенных между анодным и катодным электродами, с образованием межмембранных камер, а также анодной и катодной приэлектродных камер между соответственно анодным и катодным электродами и ближайшими к ним ионообменными мембранами, подачу электрического напряжения на анодный и катодный электроды, пропускание подлежащей опреснению воды через межмембранные камеры, объединение потоков, прошедших через межмембранные камеры, в которых катионитная мембрана расположена со стороны, обращенной к катодному электроду, с получением продукта в виде потока опресненной воды, объединение потоков, прошедших через остальные межмембранные камеры, с получением рассола, одновременную промывку обеих приэлектродных камер пропусканием через них промывочного раствора сульфата натрия, отделение из прошедших через приэлектродные камеры потоков промывочного раствора газов, образующихся на электродах, с помощью газоотделителей. Способ характеризуется тем, что используют пакет чередующихся катионитных и анионитных ионообменных мембран, в котором первая и последняя мембраны являются катионитными, при указанной промывке приэлектродных камер используют промывочный раствор с исходной концентрацией сульфата натрия не ниже значения суммарной концентрации солей в подлежащей опреснению воде и осуществляют эту промывку циклически с использованием двух пар емкостей, используя в каждом цикле, состоящем из двух тактов, на протяжении первого такта первые емкости первой и второй пар для подачи из них промывочного раствора, соответственно, в катодную и анодную приэлектродные камеры, а вторые емкости первой и второй пар - для сбора прошедшего, соответственно, через анодную и катодную приэлектродные камеры промывочного раствора после отделения от него газа, и осуществляя во втором такте каждого цикла обмен функциями между первой и второй емкостями в каждой паре по использованию их для подачи или сбора промывочного раствора. Использование предлагаемого способа позволяет исключить шунтирующее влияние промывки приэлектродных камер с соответствующим снижением непроизводительных энергозатрат и одновременно повысить эффективность промывки. Кроме того, при осуществлении предлагаемого изобретения могут быть предотвращены потери сульфат-ионов из промывочного раствора и проникновенние в него хлорид-ионов с выделением хлора на аноде. 3 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к химической, электротехнической промышленности, охране окружающей среды и нанотехнологии и может быть использовано при изготовлении упругих и гибких проводников, электропроводящих полимерных композиционных материалов, сорбентов, вибродемпфирующих материалов, аккумуляторов и сверхъемких конденсаторов. На первой стадии получают коллоидный оксид графена, для чего сначала получают порошок промежуточного продукта 1 путем кислотной обработки графитовых хлопьев, фильтрации, промывки, сушки и высокотемпературной обработки осадка в течение не более 10 минут СВЧ-излучением в микроволновой печи с объемной плотностью излучения не более 0,1 Вт/см3. Затем получают порошок промежуточного продукта 2 обработкой промежуточного продукта 1 серной кислотой, персульфатом калия и фосфорным ангидридом, охлаждением, фильтрацией, промывкой и сушкой осадка. Полученный промежуточный продукт 2 обрабатывают концентрированной серной кислотой при пониженной температуре. В полученную суспензию добавляют перманганат калия, повышают температуру до комнатной, вводят перекись водорода. Полученный коллоидный раствор промывают, фильтруют или центрифугируют. На второй стадии получают гибридный гидрогель на основе композита из графена и углеродных нанотрубок смешиванием коллоидных растворов оксида графена и углеродных нанотрубок в объемной пропорции не менее чем 12:1, добавлением органического восстановителя - D-глюкозы и термической обработки полученной финальной смеси. На третьей стадии осуществляют лиофильную сушку гибридного гидрогеля с получением аэрогеля на основе композита из графена и углеродных нанотрубок. Полученный аэрогель дополнительно обрабатывают СВЧ-излучением в микроволновой печи. После третьей стадии дополнительно проводят стадию гидрофилизации полученного аэрогеля, обрабатывая его кипящим смешанным разбавленным раствором, содержащим 3-9 % азотной кислоты и 0,5-1,5 % перекиси водорода, при соотношении Т:Ж от 1:70 до 1:50 в течение 10-20 мин. Полученный аэрогель наряду с электропроводностью обладает гидрофильностью, имеет узкое распределение размеров пор и получен безопасным способом. 4 з.п. ф-лы, 3 ил., 1 табл., 4 пр.

 


Наверх