Патенты автора Тихонов Александр Павлович (RU)

Изобретение относится к противометеоритной защите космического аппарата (КА). Устройство содержит многослойный экран в виде параллельных гребенок, выполненных из перфорированной алюминиевой конструкции (2). Конусообразные зубцы гребенок имеют вершины (3), покрытые твердым сплавом, а пространство между зубцами заполнено углерод-углеродным материалом (4). Зубцы наклонены в наиболее вероятном, с учетом орбиты КА, направлении подлета к нему частиц космического мусора и микрометеороидов. Перед каждой гребенкой расположен слой (1) полимерного материала, причем соседние гребенки смещены относительно друг друга так, что при любом направлении подлета опасных частиц обеспечивается их гарантированное соударение хотя бы с одной из вершин (3). Техническим результатом является повышение надежности защиты КА от микрометеороидов и мелких частиц космического мусора. 1 ил.
Изобретение относится к управлению движением космических аппаратов (КА), например сервисного (СКА) и обслуживаемого (ОКА) в процессе их стыковки. Для управления используют измерительную систему в составе трёх радиоизотопных источников β-излучения, установленных на СКА, и детекторов β-излучения, установленных на ОКА. Источники β-излучения помещают в контейнеры с крышками, поглощающими электроны с энергией 1 МэВ и открываемыми при стыковке. Активность β-источников регулируют в зависимости от их расстояния до β-детекторов путём смены источников внутри контейнера, а уровень активности выбирают таким, чтобы скорость счёта детекторами импульсов от β-излучения превышала скорость счёта от фоновых ионизирующих излучений. Положение СКА относительно ОКА регулируют, выравнивая скорость счета в β-детекторах. Скорость сближения СКА и ОКА до момента их стыковки снижают по мере роста данной скорости счета. Техническим результатом является упрощение обработки регистрируемых детекторами сигналов и повышение надежности системы стыковки в целом.
Изобретение относится к космической технике и может быть использовано для очистки околоземного космического пространства (ОКП) от относительно крупного по размеру космического мусора, такого как прекратившие активное существование космические аппараты (КА), разгонные блоки (РБ), последние ступени ракет (ПСР). Устройство очистки околоземного космического пространства от крупногабаритных объектов космического мусора содержит крупноячеистую сеть, выполненную в форме конуса, основание которой закреплено по периметру раздвижной управляемой рамки, а ее вершина через шаровой механизм связана с тросовой системой космического аппарата, при этом рамка снабжена двигателями малой тяги.
Изобретение относится к области управления движением космических аппаратов. Способ определения направления лазерного луча на космический аппарат, принимающий сигналы лазерной космической связи, заключается в том, что устанавливают на передающем и принимающем космических аппаратах приемно-передающие радиотехнические устройства и источник лазерного излучения. Управляют направлением лазерного луча по азимутальному углу и углу места из условия сканирования лазерным лучом заданной области космического пространства. С передающего космического аппарата излучают лазерный сигнал в направлении принимающего космического аппарата. После регистрации этого сигнала на принимающем космическом аппарате в направлении передающего космического аппарата излучают радиосигнал, по параметрам которого в момент регистрации определяют направление лазерного луча. Достигается повышение оперативности определения направления лазерного луча.
Изобретение относится к управлению движением космических аппаратов (КА), в частности, при удалении крупногабаритных фрагментов космического мусора (ФКМ) из области рабочих орбит КА в зону захоронения. Способ включает облучение ФКМ с борта КА пучком ускоренных ионов в направлении увода ФКМ. Пучок направляют в область отрезка между выбранными реперными точками на изображении (силуэте) ФКМ и изменяют направление пучка до получения неизменной по времени длины данного отрезка. Затем вращение КА может быть синхронизировано с вращением отрезка во фронтальной плоскости, а максимум пучка направлен в середину отрезка. При увеличении расстояния между другими выбранными реперными точками операции повторяются. Технический результат состоит в повышении надёжности синхронизации угловых движений КА и ФКМ при бесконтактном удалении последнего с орбиты.
Изобретение относится к области оптического приборостроения и касается устройства для ориентации космического аппарата по направлению лазерного луча. Устройство содержит плоскопараллельную пластину, выполненную из прозрачного материала с высоким показателем преломления. В нижней части пластины расположена матрица с установленными в ее ячейках пикселями различной спектральной чувствительности. В верхней части пластины по центру матрицы установлен коллиматор с диаметром отверстия, соизмеримым с размером ячейки матрицы. Поперечный размер матрицы выбран исходя из толщины пластины и максимального значения угла преломления луча лазера в заданном диапазоне спектра излучения. Технический результат заключается в упрощении конструкции устройства.

Изобретение относится к средствам защиты жидкостных ракетных двигателей от тепловых воздействий. Способ защиты огневых стенок камеры сгорания и сопла жидкостного ракетного двигателя основан на создании защитной завесы в потоке продуктов сгорания двигателя из дисперсных частиц интеркалированного графита, обладающих свойством значительного объемного терморасширения. Формирование защитной завесы осуществляется путем введения дисперсных частиц в одну из компонент топлива и последующей подачи их вместе с топливом в камеру сгорания. В камере сгорания и сопле двигателя частицы нагреваются высокотемпературным потоком продуктов сгорания до температуры их полного или частичного необратимого расширения и создают из них в потоке продуктов сгорания защитную завесу, которая ослабляет внешние тепловые воздействия. Изобретение обеспечивает повышение уровня защиты огневых стенок камеры сгорания и сопла двигателя. 1 ил.

 


Наверх