Патенты автора Компанец Тарас Николаевич (RU)

Изобретение относится к литейному производству. Способ нанесения покрытия на литейные керамические формы, подготовленные для литья титановых сплавов, включает нанесение покрытия путем пропитки, просушку формы на воздухе и повторную прокалку. В качестве пропитывающего состава используют алюмозоль, содержащий от 2 до 20% коллоидных частиц размерами от 20 до 250 нм, способствующих равномерному распределению алюмозоля внутри пор лицевого слоя керамической формы и их максимальной герметизации. Пропитку формы осуществляют методом заливки алюмозоля в керамическую оболочку при избыточном давлении воздуха не менее 1 атм. Обеспечивается получение плотного, равномерно распределенного по поверхности и в объёме лицевого слоя керамической формы нейтрального покрытия, устойчивого при температурах литья титановых сплавов, значительно снижающего образование альфа-слоя на титановых отливках. 5 ил., 1 табл., 6 пр.

Изобретение относится к литейному производству, а именно к способам нанесения пироуглеродных покрытий на литейные керамические формы для литья преимущественно титановых и других химически активных сплавов. Способ нанесения пироуглеродного покрытия на литейные керамические формы включает термическую обработку путем прокалки литейной формы с нанесенным углерод-содержащим компонентом. В качестве углерод-содержащего компонента используют водную суспензию дисперсного пироуглерода, которую наносят на лицевой слой формы путем пропитки на стадии охлаждения прокаленной формы с последующим удалением избытка суспензии, а далее осуществляют прокалку формы с нанесенным пироуглеродным покрытием при температуре не более 350°С. При этом температура литейной формы и суспензии на стадии пропитки не превышает 100°С, размер частиц пироуглерода составляет 0,100-2 мкм, а содержание частиц пироуглерода в суспензии составляет 1-6 мас.%. Изобретение позволяет получать устойчивое, плотное, равномерно распределенное по поверхности покрытие простым способом, при меньшей температуре с низкими трудо- и энергозатратами. 2 табл., 11 пр.

Изобретение относится к измерительной технике и может быть использовано для определения осевого усилия, угловой скорости, крутящего момента при экспериментальных исследованиях турбин и прочих энергоустановок. Стенд включает корпус 1, в котором установлен вращающийся вал 2, опирающийся на радиальный 3 и радиально-упорный 4 подшипники. Радиально-упорный подшипник 4 закреплен в корпусе 1 с помощью внутреннего 5 и внешнего 6 стопорных колец, позволяющих регулировать осевое перемещение вала 2 в подшипниках 3 и 4. Вал 2 воспринимает осевое усилие и крутящий момент, создаваемый рабочими элементами турбины или иной энергоустановки. На валу 2 установлена подвижная муфта 7, соединяющая вал 2 энергоустановки с промежуточным валом 8. Муфта 7 жестко соединена с валом 2 и за счет шлицевого соединения обеспечивает осевое перемещение вала 2 относительно как промежуточного вала 8, так и корпуса 1. Стенд снабжен устройством для измерения осевого усилия, включающим датчик измерения осевого усилия 9, упорную плиту 10 с силовым приводом 11, соединенную с подвижной муфтой 7 через упорный подшипник 12, установленный в упорной плите. На валу 2 турбины установлен датчик перемещения 22. Устройство для измерения осевого усилия имеет поступательную степень свободы и оказывает воздействие на муфту 7 через упорный подшипник 12. Датчик измерения усилия 9 вырабатывает электрический выходной сигнал. Электрический сигнал датчика 9 регистрируется блоком обработки измерительной информации 13. Промежуточный вал 8 с помощью муфт сцепления 14 соединен с измерительным валом 15. На измерительном валу 15 зафиксированы диски измерения частоты вращения 16 и 17 вала 2 на расстоянии L один от другого. Диски 16 и 17 снабжены магнитными или оптическими метками, позволяющими с помощью датчиков 18 и 19 регистрации частоты вращения дисков 16 и 17 регистрировать их угловую скорость вращения и определять фазовый сдвиг частоты вращения диска 16 по отношению к диску 17 с помощью блока регистрации и обработки измерительной информации 13. Измерительный вал 15 соединен с нагрузочным устройством 20 с помощью муфт сцепления 14. На валу 2 турбины установлен датчик перемещения 22. Датчик перемещения 22, датчик измерения осевого усилия 9 и датчики регистрации частоты вращения 18, 19 соединены с блоком регистрации и обработки измерительной информации 13. Технический результат заключается в расширении функциональных возможностей стенда путем проведения одновременного измерения осевого усилия, угловой скорости и крутящего момента турбинной энергоустановки с высокой точностью. 3 з.п. ф-лы, 1 ил.

Изобретение относится к машиностроительной промышленности, а именно к способам измерения объемов емкостей, в особенности с полостями сложной конфигурации, технических изделий в условиях промышленного производства, при их эксплуатации и при проведении опытных работ. Задачей, на решение которой направлено заявляемое изобретение, является снижение сложности процесса измерения объемов, повышение производительности и точности измерения. Технический результат, обеспечивающий решение указанной задачи, состоит в снижении количества операций в процессе измерения объема емкости и исключения из процесса специальных веществ, в упрощении взаимоувязки функциональных и измерительных операций и в замене принципа косвенного измерения на прямой принцип измерения объема емкости. В способе определения объема емкости, включающем в себя сообщение контролируемой емкости с калиброванной емкостью известного объема, калиброванную и контролируемую емкости заполняют газом, например воздухом, до определенного любого давления, измеряют это давление, затем весь объем газа из калиброванной емкости вводят в контролируемую емкость, измеряют установившееся давление газа в контролируемой емкости и по возросшей величине этого давления определяют искомый объем контролируемой емкости. 6 з.п. ф-лы, 1 ил.

 


Наверх