Патенты автора ОСТУНИ Раффаэле (CH)

Группа изобретений относится к способу снижения содержания NOx и N2O в хвостовом газе процесса получения азотной кислоты. Способ снижения содержания NOx и N2O во входном хвостовом газе процесса получения азотной кислоты включает стадию сокращения выбросов, включающую по меньшей мере стадию deN2O и стадию deNOx и вырабатывающую очищенный хвостовой газ с температурой выше, чем у входного хвостового газа. Температура хвостового газа составляет менее 400°С. Перед подачей на стадию сокращения выбросов входной хвостовой газ подогревается до температуры по меньшей мере 400°С путем косвенного теплообмена с по меньшей мере частью очищенного газа. Стадии deN2O и deNOx проводят в отдельных слоях катализатора. При этом стадия deNOx проводится в присутствии по меньшей мере одного из следующих катализаторов: ванадиевый катализатор, катализатор из медесодержащего цеолита и катализатор из железосодержащего цеолита. Также заявлена система для снижения содержания NOx и N2O в хвостовом газе процесса получения азотной кислоты и способ получения системы путем реконструкции существующей системы. Группа изобретений обеспечивает снижение содержания NOx и N2O в поступающем хвостовом газе процесса получения азотной кислоты, обеспечивает эффективное разложение N2O с использованием цеолитов на основе железа, а также обеспечивает третичное и четверичное сокращение выбросов NOx и N2O из хвостового газа процесса получения азотной кислоты, температура которого составляет менее 400°С. 3 н. и 12 з.п. ф-лы, 1 ил., 1 пр.
Изобретение может быть использовано в химической промышленности. Способ производства аммиака из углеводородного сырья включает риформинг углеводородного сырья для получения подпиточного газа и конверсию подпиточного газа в аммиак. Способ осуществляют на установке по производству аммиака, которой необходима определенная электрическая мощность для работы и мощность Ps запуска для обеспечения запуска. На аммиачной установке вырабатывают первую электрическую мощность Р1, а вторую электрическую мощность Р2 импортируют из источника электрической мощности, который является внешним по отношению к указанной установке. Вторая электрическая мощность Р2 равна или больше мощности Ps запуска. Предложены также установка для производства аммиака из углеводородного сырья и способ ее эксплуатации. Изобретения позволяют повысить эффективность потребления электроэнергии при запуске установки для производства аммиака. 3 н. и 10 з.п. ф-лы.

Настоящее изобретение относится к способу реконструкции секции очистки установки дистилляции метанола, в которую подается поток метанола-сырца и которая включает очистную колонну (300) среднего давления (СД), выполненную с возможностью работы при первом давлении (p1) дистилляции, и очистную колонну (400) низкого давления (НД), выполненную с возможностью работы при втором давлении (р2) дистилляции, где p1 больше р2. Каждая очистная колонна (300) СД и очистная колонна (400) НД содержит по меньшей мере один кубовой кипятильник, подающий тепло дистилляции в колонну СД и колонну НД соответственно. Очистная колонна (300) СД содержит верхний выпускной трубопровод (304) для газообразного потока дистиллята метанола и нижний выпускной трубопровод (305) для содержащего метанол раствора. Верхний выпускной трубопровод (304) подводится к по меньшей мере одному кубовому кипятильнику (401) очистной колонны НД, для которого газообразный поток дистиллята метанола служит источником тепла, а нижний выпускной трубопровод (305) подводится к очистной колонне НД, в которой содержащий метанол раствор подвергается дальнейшей очистке. При этом устанавливают очистную колонну (200) высокого давления (ВД), выполненную с возможностью работы при третьем давлении (р3) перегонки, где р3 выше p1. Также устанавливают трубопровод (204) подачи газообразного потока дистиллята метанола из верхней части колонны ВД к по меньшей мере одному кубовому кипятильнику колонны СД, для которого газообразный поток дистиллята метанола служит источником тепла, и устанавливают нижний выпускной трубопровод (205) для отведения из вновь установленной колонны ВД жидкого потока, состоящего преимущественно из воды. Технический результат - повышение производительности секции очистки установки дистилляции метанола, содержащей дистилляционную колонну СД и дистилляционную колонну НД, при сохранении низкого энергопотребления и малых капиталовложений и без перегрузки существующих дистилляционных секций среднего и низкого давлений. 14 з.п. ф-лы, 2 ил.

Изобретения относятся к получению водородосодержащего синтез-газа. Описан способ получения водородосодержащего синтез-газа, включающий получение водородосодержащего синтез-газа конверсией углеводородного сырья и подвод тепла от сжигания нескольких технологических топливных потоков, которые включают по меньшей мере один топливный поток аммиака, сжигание которого осуществляют без использования катализатора в по меньшей мере одном устройстве с огневым нагревом. Описан способ модернизации установки синтеза аммиака из углеводородного сырья, включающей головную секцию, содержащую секцию риформинга для конвертирования углеводородного сырья в сырой синтез-газ, содержащий водород, СО и СО2, и секцию очистки, вырабатывающую очищенный синтез-газ, содержащий водород и азот в требуемом молярном отношении 3:1, и секцию синтеза для конвертирования очищенного синтез-газа в аммиачный продукт, причем при осуществлении способа обеспечивают отделение части аммиачного продукта и рециркуляцию этой части аммиачного продукта в головную секцию для использования аммиака в качестве топлива в по меньшей мере одном устройстве с огневым нагревом, входящем в состав установки, в котором аммиачное топливо сжигается без использования катализатора для осуществления описанного выше способа. Описан способ пуска химической установки синтеза аммиака, включающий некаталитическое сжигание аммиака в по меньшей мере одном устройстве с огневым нагревом, входящем в состав установки, во время пуска установки для осуществления описанных выше способов. Технический результат - снижение выбросов СО2 в атмосферу. 3 н. и 17 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Изобретение может быть использовано в химической промышленности. Способ получения азотной кислоты включает стадию каталитического окисления аммиака с получением технологического газа, содержащего оксиды азота NOx и N2O, и стадию абсорбции технологического газа посредством воды с получением потока, содержащего азотную кислоту, и потока 18 хвостового газа, содержащего NOx и N2O. Содержание NOx и N2O в потоке 18 газа уменьшают посредством пропускания указанного потока без какой-либо предыдущей ступени удаления NOx через первую ступень 7 deN2O, использующую катализатор на основе железосодержащего цеолита для разложения N2O, с получением отходящего потока 19 газа с пониженным содержанием N2O. Затем пропускают отходящий поток ступени deN2O через вторую ступень 8 deNOx, использующую катализатор V2O5-TiO2, в присутствии газообразного аммиака в качестве реагента-восстановителя. Потоки газа, содержащие N2O и NOx, на входе первой ступени и второй ступени, имеют температуру более 400°С. Предложена установка для получения азотной кислоты и способ модернизации установки. Изобретения позволяют сократить выбросы NOx и N2O при производстве азотной кислоты без использования дорогого катализатора и больших капитальных затрат на оборудование. 3 н. и 16 з.п. ф-лы, 1 табл., 2 пр., 1 ил.

Изобретение относится к области совместного получения аммиака и мочевины. Установка для совместного получения аммиака и мочевины включает секцию получения аммиака и присоединенную секцию получения мочевины. Углеводородное сырье подвергают риформингу с получением использующегося для синтеза аммиака подпиточного синтез-газа. По меньшей мере часть синтезированного аммиака представляет собой сырье для синтеза мочевины. Синтез мочевины включает реакцию аммиака с диоксидом углерода с получением водного раствора мочевины и последующую обработку указанного раствора в секции извлечения мочевины. Очистка подпиточного газа включает удаление СО2 путем проведения первой и второй стадий удаления СО2 в первом и втором модуле удаления СО2, которые проводят последовательно или параллельно, модули удаления СО2 не входят в состав секции синтеза мочевины. Одна из стадий удаления СО2 включает промывку содержащего СО2 подпиточного газа раствором карбамата, отобранным из секции извлечения мочевины. Диоксид углерода, использующийся в качестве сырья в синтезе мочевины, содержит по меньшей мере часть диоксида углерода, отделенного на указанных стадиях удаления СО2. Обеспечивается повышение производительности процесса. 3 н. и 12 з.п. ф-лы, 4 ил.

Изобретение относится к способу синтеза аммиака из природного газа. Способ включает: проводимое в секции превращения превращение загрузки десульфурированного природного газа и пара с использованием обогащенного кислородом воздуха или с использованием кислорода в синтез-газ, содержащий водород, CO и CO2; обработку указанного синтез-газа, включающую по меньшей мере одну реакцию конверсии монооксида углерода в CO2 и последующее отделение CO2 от газа, с получением таким образом обедненного посредством CO2 синтез-газа и обогащенного посредством CO2 газового потока, содержащего CO2, отделенного от газа; необязательно стадию метанирования синтез-газа и/или добавления азота к синтез-газу. При этом часть указанного обедненного посредством CO2 синтез-газа отделяют в виде предназначенной для использования в качестве топлива фракции, причем указанную предназначенную для использования в качестве топлива фракцию загружают в качестве топлива по меньшей мере в одну печь. Указанное отделение предназначенной для использования в качестве топлива фракции включает разделение указанного обедненного посредством CO2 синтез-газа по меньшей мере на первый поток и второй поток. Указанные потоки обладают одинаковым составом, где первый поток представляет собой предназначенную для использования в качестве топлива фракцию и второй поток представляет собой технологический газ, предназначенный для синтеза аммиака, необязательно после дополнительной очистки. Предложенный способ позволяет обеспечить существенное уменьшение выбросов СО2 в атмосферу. 13 з.п. ф-лы, 4 ил., 2 табл., 1 пр.

Настоящее изобретение относится к способу синтеза метанола из углеводородного сырья, включающему следующие стадии: превращение указанного углеводородного сырья, получение синтез-газа; сжатие указанного синтез-газа до обеспечения использующегося для синтеза давления; введение в реакцию указанного синтез-газа при указанном использующемся для синтеза давлении, получение неочищенного метанола; разделение указанного неочищенного метанола, получение содержащего метанол жидкого потока и непрореагировавшего синтез-газа; обработка по меньшей мере части указанного непрореагировавшего синтез-газа на стадии извлечения водорода. При этом синтез-газ, полученный на стадии превращения указанного углеводородного сырья, содержит оксиды углерода и водород при стехиометрическом молярном соотношении (Н2-СO2)/(СО+СO2), составляющем менее 1,7; до проведения указанной стадии ведения в реакцию указанное значение стехиометрического молярного соотношения (Н2-СO2)/(СО+СO2) увеличивают до равного не менее 1,9 путем смешивания синтез-газа с содержащим водород потоком, полученным на указанной стадии извлечения водорода, и указанная часть непрореагировавшего синтез-газа, обрабатываемая на указанной стадии извлечения водорода, составляет не менее 50 об. % от полного количества непрореагировавшего синтез-газа, полученного на указанной стадии разделения. Предлагаемый способ позволяет получить целевой продукт с использованием простой схемы контура синтеза. 13 з.п. ф-лы, 1 ил.

Изобретение относится к способу производства аммиака путем каталитической конверсии подпиточного газа, содержащего водород и азот, а также к установке для его осуществления и к способу модернизации контура синтеза аммиака. Способ включает по меньшей мере две реакционные стадии синтеза аммиака, где осуществляют указанные стадии последовательно, с получением на каждой из них аммиаксодержащего газообразного продукта (10, 13, 34, 38). Затем подводят в качестве питательного потока для второй и любой последующей реакционной стадии по меньшей мере часть газообразного продукта (12А, 36) предыдущей реакционной стадии, где между следующими друг за другом реакционными стадиями осуществляют промежуточную адсорбционную стадию по адсорбции аммиака. Причем указанные реакционные стадии осуществляют в одном или большем числе слоев (2, 3, 24, 25, 26, 27) катализатора, расположенных в одном сосуде-реакторе или в разных сосудах-реакторах, и каждую из указанных реакционных стадий осуществляют в объеме катализатора, по существу равном или превышающем объем катализатора последующей реакционной стадии. Технический результат заключается в разработке способа синтеза аммиака с высокой конверсией за проход реагентов, отличающегося простотой, надежностью и экономичностью. 3 н. и 13 з.п. ф-лы, 10 ил., 2 табл.

Изобретение может быть использовано в химической промышленности. Способ совмещенного синтеза аммиака и азотной кислоты включает синтез азотной кислоты, при осуществлении которого подвергают поток аммиака окислению с получением газового потока, содержащего оксиды азота. Полученный газовый поток подвергают абсорбции оксидов азота с получением азотной кислоты и первого хвостового газа, содержащего азот и остаточные оксиды азота. Из по меньшей мере части первого хвостового газа удаляют оксиды азота с получением второго хвостового газа, содержащего азот и имеющего более низкое содержание оксидов азота, чем первый хвостовой газ. Синтез аммиака осуществляют посредством каталитической конверсии подпиточного газа, содержащего водород и азот, в контуре синтеза аммиака. По меньшей мере часть второго хвостового газа служит источником азота для подпиточного газа. При этом другую часть второго хвостового газа подвергают расширению с совершением работы. Изобретение позволяет уменьшить выброс в атмосферу отходящих газов производства азотной кислоты и уменьшить общее энергопотребление процессов получения аммиака и азотной кислоты. 3 н. и 8 з.п. ф-лы, 4 ил., 1 табл., 1 пр.

Изобретение относится к области производства водородосодержащего синтез-газа путем риформинга углеводорода, в частности к извлечению диоксида углерода при очистке этого синтез-газа. Способ включает риформинг углеводородного сырья (101) и очистку сырого синтез-газа, содержащую конверсию сдвига моноксида углерода в диоксид углерода и последующую абсорбцию диоксида углерода в абсорбирующей среде (7а, 14) с получением потока среды (5), богатой CO2. Далее осуществляют регенерацию этой среды извлечением поглощенного в ней CO2, причем сырой синтез-газ (102) получают на шаге риформинга при давлении по меньшей мере 45 бар, регенерация среды с высоким содержанием CO2 включает шаг химической регенерации, а среда с высоким содержанием CO2 в процессе химической регенерации имеет температуру по меньшей мере 150°С. Технический результат заключается в повышении энергетической эффективности извлечения диоксида углерода и его использовании для получения мочевины на заводе по производству аммиака/мочевины. 13 з.п. ф-лы, 4 ил.
Изобретение относится к способу получения аммиака каталитической реакцией подпиточного синтез-газа, получаемого риформингом углеводородного сырья, и к установке для его осуществления. Способ включает: первичный риформинг углеводородного сырья с водяным паром, с получением первого риформинг-газа, вторичный риформинг первого риформинг-газа с огневым подогревом воздуха, с получением сырого синтез-газа, очистку сырого синтез-газа, с получением подпиточного синтез-газа, конверсию подпиточного синтез-газа в аммиак в контуре синтеза. При этом первичный риформинг проводят при температуре, равной по меньшей мере 790°С, и давлении, равном по меньшей мере 50 бар, а вторичный риформинг проводят в основном без избытка воздуха, по сравнению с его стехиометрическим количеством. Подпиточный синтез-газ имеет молярное отношение Н2 к N2, равное 2,5 или более, но менее 3. Затем осуществляют отбор из контура синтеза продувочного потока, отделение от него потока, содержащего водород, и добавление этого содержащего водород потока к упомянутому подпиточному газу для регулирования отношения Н2 к N2. Технический результат заключается в получении более высокой производительности без превышения предельных режимов паровой турбины. 2 н. и 11 з.п. ф-лы, 1 ил.

Изобретение относится к процессу получения аммиака из углеводородного сырья, соответствующей установке и способу реконструкции таких установок. Способ включает стадии: риформинга углеводородного сырья в сырой полученный газ, для выполнения которой требуется приток тепла, очистки сырого полученного газа с получением подпиточного синтез-газа и конверсии синтез-газа в аммиак, включающей конверсию сдвига монооксида углерода в двуоксид углерода. При этом упомянутый приток тепла для процесса риформинга по меньшей мере частично обеспечивают рекуперацией из по меньшей мере одного из: конверсии сдвига, выполняемой при максимальной температуре по меньшей мере 450°C, и конверсии в аммиак. Технический результат заключается в снижении металлического пылеобразования, которое ведет к последующей коррозии и сокращению срока службы реактора. 3 н. и 12 з.п. ф-лы, 3 ил., 3 пр.

Изобретение относится к способу и установке получения аммиака и производных соединений аммиака, такого как мочевина, из природного газового сырья, а также к способу модернизации установки для синтеза аммиака и мочевины. Способ включает конверсию природного газа в синтез-газ во входной части, синтез аммиака из синтез-газа в контуре синтеза, использование по меньшей мере части аммиака для получения производного соединения аммиака. Кроме того, способ осуществляют с энергопотребителями и потребителями тепла. При этом часть природного газового сырья используют для снабжения топливом газовой турбины, а энергию, вырабатываемую газовой турбиной, используют для обеспечения, по меньшей мере частично, потребности энергопотребителей в энергии. Далее из отходящего газа газовой турбины рекуперируют тепло и по меньшей мере часть тепла рекуперируют в виде низкотемпературного тепла для обеспечения технологическим теплом по меньшей мере одного из указанных потребителей тепла. При этом низкотемпературное тепло из отходящего газа передают по меньшей мере одному из потребителей тепла посредством теплопередающей среды и указанную среду нагревают путем непрямого теплообмена с отходящим газом до температуры не выше 200°С. Технический результат заключается в снижении энергопотребления на данных установках. 3 н. и 14 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к способу и установке для получения аммиака и производного соединения аммиака, такого как мочевина, из природного газового сырья, а также к способу модернизации установки для синтеза аммиака и мочевины. Способ включает конверсию природного газа в синтез-газ во входной части, синтез аммиака из синтез-газа в контуре синтеза, использование по меньшей мере части аммиака для получения производного соединения аммиака. Способ осуществляют с энергопотребителями (2) и потребителями (3) тепла. При этом часть (15) природного газового сырья используют для снабжения топливом поршневого газового двигателя (6), а энергию (7), вырабатываемую газовым двигателем (6), используют для обеспечения, по меньшей мере частично, потребности энергопотребителей (2) в энергии. Далее рекуперируют тепло из отходящего газа газового двигателя и по меньшей мере часть тепла рекуперируют для обеспечения им по меньшей мере одного из указанных потребителей (3) тепла. При этом тепло, рекуперированное из отходящего газа газового двигателя, представляет собой по меньшей мере часть низкотемпературного тепла (10), передаваемого по меньшей мере одному из потребителей тепла посредством теплопередающей среды, которую нагревают путем непрямого теплообмена. Технический результат заключается в снижении энергопотребления в установках для синтеза аммиака. 3 н. и 15 з.п. ф-лы, 1 ил., 1 пр.

Изобретение может быть использовано в химической промышленности. Получение синтез-газа для производства аммиака из содержащего углеводороды сырья 20 включает стадии первичной конверсии 21 с водяным паром, вторичной конверсии 23 с потоком оксиданта и очистку потока, выходящего со стадии вторичной конверсии. Часть сырья обходит секцию первичной конверсии по байпасу, величина отношения количества водяного пара к количеству углерода при первичной конверсии составляет от 2,5 до 3. Водяной пар добавляют на нескольких стадиях способа. Очистка включает стадию конверсии 13 моноксида углерода, на которой синтез-газ 25, полученный путем вторичной конверсии, подвергают среднетемпературной CO-конверсии в присутствии катализатора на основе меди. Общая величина отношения количества водяного пара к количеству углерода, введенного с сырьем, в этом способе не выше 2. Предложенные изобретения обеспечивают более полное и оптимальное использование разных секций установки благодаря возможности локального изменения отношения количества водяного пара к количеству углерода. 3 н. и 18 з.п. ф-лы, 5 ил.

Изобретение относится к способу очистки потока (100) синтез-газа, содержащего водород. Способ содержит водород для получения свежего синтез-газа для синтеза аммиака, причем указанный поток состоит из водорода, а также оксида углерода, диоксида углерода, воды и примесей в незначительных количествах. При этом способ включает стадию (15) криогенной очистки и до указанной стадии криогенной очистки - стадию (14) дегидратации синтез-газа, причем до указанных стадий дегидратации и криогенной очистки включает стадию (13) метанирования указанного потока (100) для превращения оксида углерода и диоксида углерода в метан и воду, указанная стадия криогенной очистки включает промывку жидким азотом. Технический результат заключается в рекуперации большего количества тепла. 3 з.п. ф-лы, 1 ил.

Настоящее изобретение относится к риформингу углеводородов с целью подготовки синтез-газа для производства аммиака. Способ получения синтез-газа для производства аммиака из содержащего углеводороды сырья во входной части установки включает стадии: конверсии указанного сырья с водяным паром с получением синтез-газа, содержащего водород, оксид углерода и диоксид углерода; обработки указанного синтез-газа, включая конверсию оксида углерода и последующее удаление диоксида углерода, причем конверсия синтез-газа включает стадию высокотемпературной конверсии с использованием катализатора на основе железа; общая величина молярного отношения водяного пара к углероду во входной части не выше 2,6; и в котором указанная конверсия с водяным паром включает: первую стадию конверсии, включающую первичную конверсию с водяным паром, обеспечивая, таким образом, получение после конверсии первого газа; вторую стадию конверсии с использованием потока оксиданта, обеспечивая, таким образом, получение синтез-газа, содержащего водород, оксид углерода и диоксид углерода; причем указанные первая и вторая стадии конверсии осуществляются последовательно, указанная вторая стадия конверсии осуществляется с использованием кислорода или обогащенного воздуха, содержащего не менее 50% кислорода, в качестве потока оксиданта; и причем синтез-газ, полученный после указанной второй стадии конверсии, затем смешивают с водяным паром до подачи на высокотемпературную конверсию, для того чтобы повысить общую величину молярного отношения водяного пара к углероду во входной части до требуемого значения. Входная часть установки для получения синтез-газа для производства аммиака из содержащего углеводороды сырья в соответствии с описанным способом включает: секцию конверсии с водяным паром; дополнительное оборудование для обработки синтез-газа, выходящего из указанной секции конверсии, включающее по меньшей мере CO-конвертер и секцию удаления диоксида углерода, причем указанное дополнительное оборудование включает CO-конвертер для высокотемпературной конверсии (ВТК, англ. HTS) с использованием катализатора на основе железа; указанная секция конверсии с водяным паром включает: первую установку для конверсии, включающую риформинг-установку (REF1) для первичной конверсии с водяным паром, риформинг-установку (REF2) для вторичной конверсии, на которую подают поток оксиданта (О2), для получения синтез-газа, содержащего водород, оксид углерода и диоксид углерода; линию для подачи оксиданта на указанную риформинг-установку (REF2) для вторичной конверсии, подающую кислород или обогащенный воздух, содержащий не менее 50% кислорода, в качестве потока оксиданта, и указанная входная часть установки дополнительно включает трубопровод (PS) для ввода водяного пара, смонтированный для добавления водяного пара в поток, выходящий из риформинг-установки (REF2) для вторичной конверсии, на стороне входа CO-конвертера для высокотемпературной конверсии (HTS). Технический результат - при заданной производительности нагрузка риформинг-установки для первичной конверсии с водяным паром снижается примерно на 10-20% или даже более, и расход синтез-газа (м3/ч) через входную часть установки при заданном объеме производства аммиака может быть снижен примерно на 30%, что является большим преимуществом с точки зрения размеров установки и затрат. 2 н. и 17 з.п. ф-лы, 5 пр., 2 табл., 8 ил.

Изобретение относится к модернизации установки для синтеза аммиака. Способ модернизации входной части установки для синтеза аммиака, причем указанная входная часть подает получаемый газ для синтеза аммиака и включает секцию конверсии, включающую установку для вторичной конверсии с воздушным обогревом или установку для автотермической конверсии, работающую под давлением во входной части, секцию очистки потока, выходящего из секции конверсии, воздушный компрессор, первоначально установленный для подачи воздуха в секцию конверсии для использования в качестве оксиданта, при этом способ включает направление содержащего О2 потока в секцию конверсии для использования в качестве оксиданта, введение потока азота в соответствующем месте входной части для обеспечения требуемого молярного отношения водорода к азоту в получаемом газе и сжимание потока азота посредством воздушного компрессора. Изобретение обеспечивает снижение затрат на модернизацию установки. 10 з.п. ф-лы, 3 ил.

 


Наверх