Патенты автора Гасанов Ахмедали Амиралы оглы (RU)

Изобретение относится к неорганической химии, фармацевтике и медицине и может быть использовано при получении катализаторов и медицинских препаратов. Металлическое олово подвергают взаимодействию с хлором при атмосферном давлении и 80-110°С в установке с обратным холодильником. Затем продукт очищают с отбором фракции чистого тетрахлорида олова высокотемпературной ректификацией. Синтез и очистку тетрахлорида олова выполняют в токе высокочистого аргона в оборудовании из высокочистого кварца. Получают SnCl4 особой чистоты с содержанием примесей менее 10-4 масс. 1 ил., 1 табл., 2 пр.

Изобретение относится к способу электроокисления ионов церия (III), включающему обработку исходного раствора, содержащего ионы церия (III), в электролизере с установленными в нем анодом и катодом, разделенными пористой наноструктурированной керамической диафрагмой на анодную и катодную камеры, каждая из которых имеет ввод и вывод, при этом ввод и вывод каждой камеры снабжены циркуляционными контурами, подачу исходного раствора в анодную камеру электролизера, подачу вспомогательного электролита в катодную и проведение электролиза при поддержании необходимых температуры и давления. Способ характеризуется тем, что диафрагма выполнена из зерен оксида алюминия, окруженных частицами диоксида циркония, в качестве электролита в процессе используют исходный раствор, содержащий: азотнокислый церий от 100 до 200 г/л, азотнокислые лантаноиды от 0 до 200 г/л и от 30 до 100 г/л азотной кислоты, при этом в катодную камеру электролизера подают либо вспомогательный электролит, в качестве которого используют раствор азотной кислоты концентрацией не менее 30 г/л, либо исходный раствор, и процесс ведут при поддержании турбулентного режима протекания электролита в катодной и анодной камерах или при поддержании турбулентного режима протекания электролита в анодной камере и ламинарного режима в катодной, при этом турбулентный режим протекания электролита в анодной камере поддерживают при значении числа Рейнольдса 3000-71000; при поддержании температуры анолита 50-55°С и температуры католита 20-25°С и превышении давления в катодной камере по отношению к анодной, причем перепад давления на диафрагме поддерживают в пределах 1,2⋅105÷2⋅105 Па при соотношении площадей анода и катода (3-5):1 и соотношении объема анодной камеры и объема катодной камеры (8-10):1; электролиз ведут при ступенчатом изменении анодной плотности тока от 3,5-7,0 А/дм2 в течение 60-90 мин с последующим понижением плотности тока в 1,5-2,0 раза через каждые 20-40 мин, и при достижении анодной плотности тока 0,5 А/дм2 процесс продолжают еще в течение 30-40 мин. Использование предлагаемого способа позволяет снизить энергозатраты и повысить выход по току ионов Се4+, а также обеспечивает снижение времени получения единицы готовой продукции.1 з.п. ф-лы, 7 пр., 1 ил.

Изобретение относится к технологии получения высокочистого тетрахлорида кремния и может быть использовано в производстве тетрахлорида кремния оптического качества, применяемого в технологии синтеза сцинтилляционных материалов, предназначенных для создания детектирующих медицинских систем, и в полупроводниковой промышленности для производства высокоомных эпитаксиальных структур. Способ включает хлорирование технического тетрахлорида кремния в реакторе при подаче хлора под слой жидкого тетрахлорида кремния на 5-10 мас.% более от стехиометрически необходимого, со скоростью не выше 1,5 л/ч на 1 кг исходного тетрахлорида кремния с выдержкой прохлорированного продукта в течение 1-24 ч при освещении дневным светом через смотровое окно и последующую фракционную перегонку прохлорированного продукта на ректификационной тарельчатой кварцевой колонне с отбором легкой и целевой фракций, при этом отбор легкой фракции с растворенным в ней хлором направляют на стадию хлорирования, а готовый продукт отбирают при флегмовом числе, равном не менее 20. Избыток хлора в процессе хлорирования обеспечивают добавлением легкой фракции, полученной в процессе фракционной перегонки тетрахлорида кремния, а в качестве материала смотрового окна в реакторе хлорирования тетрахлорида кремния используют кварцевое стекло, не содержащее боросиликатов. Изобретение позволяет получать тетрахлорид кремния с содержанием хлоридов кремния с Н-группами и примесей металлов на уровне 1⋅10-7-2,5⋅10-9 мас.%. 2 з.п. ф-лы, 1 табл., 6 пр.

Изобретение относится к получению порошка тантала. Способ включает активацию слитка тантала нагреванием до 700-900°C и гидрирование в атмосфере водорода при избыточном давлении 0,01-0,3 МПа с использованием в качестве источника водорода насыщенного гидрида интерметаллического соединения LaNi4Co, измельчение синтезированного гидрида тантала до заданной степени дисперсности и дегидрирование полученного порошка ТаНх в две стадии. Сначала дегидрируемый порошок ТаНх нагревают до 800-850°C и поглощают основную часть выделяющегося водорода с использованием в качестве сорбента ненасыщенного гидрида интерметаллического соединения LaNi4Co, затем повышают температуру до 850-900°C и поглощают остаточную часть водорода с использованием предварительно активированного и дегазированного LaNi4Co. Обеспечивается получение порошка тантала с содержанием водорода менее 0,05 мас.%. 3 ил., 1 табл.

Изобретение относится к монокристаллическим оптическим неорганическим материалам, которые могут использоваться в оптической технике. Оптический материал представляет собой монокристаллический моноиодид индия InI ромбической сингонии с областью спектрального пропускания до 51 мкм. Способ получения InI включает предварительную очистку исходной шихты методом ректификации, выращивание монокристалла методом Бриджмена со скоростью протяжки не более 2,0 мм/ч в кварцевой ампуле из стекла «пирекс», отделение от конечной части выращенного кристалла мутной части и четырехкратную кристаллофизическую очистку полученного на предыдущей стадии высокочистого материала путем повторного выращивания кристалла с промежуточным отделением конечной мутной части кристалла после каждой очистки. Изобретение позволяет получать монокристаллы InI, прозрачные от видимого до дальнего инфракрасного диапазона спектра, отличающиеся негигроскопичностью. 2 н.п. ф-лы, 3 ил., 1 табл., 6 пр.

Изобретение относится получению титансодержащих металлических порошков. Способ включает травление слитков титансодержащего металлического материала, промывку, гидрирование слитков, измельчение полученного гидрида в порошок, дегидрирование полученного порошка гидрида путем термического разложения при вакуумировании и повторное измельчение дегидрированного порошка. Травление ведут в растворе смеси соляной и плавиковой кислот, содержащем 90 об.% соляной кислоты и 10 об.% плавиковой кислоты, при этом дегидрирование периодически прерывают и подвергают порошок гидрида воздействию инертного газа в течение 55-60 с при давлении инертного газа 0,5-0,7 МПа. Первое воздействие на порошок гидрида инертным газом производят через 1-1,5 ч после начала дегидрирования, а последующие воздействия инертным газом производят через 55-60 мин дегидрирования при вакуумировании. Обеспечивается снижение содержания водорода в мелкодисперсных титансодержащих порошках узкого гранулометрического состава. 2 з.п. ф-лы, 1 табл.
Изобретение относится к способу селективного извлечения иттрия и европия из продуктов переработки отходов люминофоров. Способ включает растворение исходного продукта, взятого в виде плава хлоридов, в дистиллированной воде. Раствор обрабатывают 40%-ной фтористоводородной кислотой. Полученный осадок сушат, прокаливают в муфельной печи при температуре 650-800°C и смешивают со стружкой металлического кальция, взятого с 15-20%-ным избытком от стехиометрически необходимого количества. Далее смесь прессуют и плавят до получения металлического иттрия и шлака, содержащего фториды европия и кальция. Заявленный способ позволяет практически полностью селективно извлечь из продукта переработки отходов люминофоров европий и иттрий. При этом существенно сокращается продолжительность процесса разделения до 3-4 часов. 1 пр.

Изобретение относится к новым неорганическим кристаллическим сцинтилляционным материалам на основе бромида лантана, легированного церием, и может быть использовано для регистрации ионизирующего излучения – гамма-квантов, рентгеновского излучения, космических излучений, элементарных частиц в фундаментальной физике, технике и медицине. Неорганический монокристаллический сцинтиллятор имеет состав La(1-m)CemBr(3-2k)Оk, где m - мольная доля церия, замещающего La, больше 0, но меньше или равно 1; k - мольная доля кислорода, замещающего бром, находится в пределах от 1.5⋅10-4 до 8⋅10-4. Технический результат заключается в повышенной механической прочности (повышение трещиностойкости, уменьшение хрупкости) кристаллического сцинтиллятора, в особенности диаметром 15 мм и более, с сохранением высоких сцинтилляционных характеристик. 1 табл., 8 пр.

Изобретение относится к мелкодисперсному получению порошка титана. Способ включает активирование исходного материала, гидрирование, измельчение полученного гидрида титана, термическое разложение гидрида титана в вакууме и измельчение образовавшегося титанового спека. В качестве исходного материала используют слиток, который получают вакуумным переплавом титанового сырья в медном водоохлаждаемом кристаллизаторе и кристаллизацией слитка при удельном тепловом потоке через поверхность кристаллизатора (3,3-3,9)⋅106 Вт/м2. Активирование ведут в две стадии: сначала обработкой в растворе, содержащем воду, азотную и фтористоводородную кислоты при соотношении компонентов H2O:HNO3:HF, равном (0,9÷1,1):(0,9÷1,1):(0,17÷0,23), а затем в камере гидрирования, содержащей хлористый водород в объеме 0,01-0,015% объема камеры. Гидрирование ведут при избыточном давлении водорода в камере гидрирования 1,1-2,0 атм до содержания водорода в титане 350-410 л/кг. Обеспечивается повышение выхода годного порошка с гранулами округлой формы размером 20-50 мкм. 1 табл.
Изобретение относится к металлургии редких и редкоземельных металлов, а именно к способу переработки люминофоров на основе сульфида цинка, и может быть использовано для получения обогащенного по иттрию и европию концентрата. Способ включает сушку сырья при температуре 150÷320°C в течение 2-3 часов. Затем ведут хлорирование при температуре 800-900°C в расплаве хлористых солей иттрия и европия. Причем хлорирование проводят при массовом соотношении хлорида иттрия к хлориду европия 1:(0,1÷0,3). Техническим результатом изобретения является упрощение процесса за счет сокращения количества операций, упрощение аппаратурного оформления процесса, а также снижение энергоемкости процесса получения концентрата редкоземельных элементов. 1 пр.

Изобретение относится к технологии редких и рассеянных элементов и может быть использовано при получении галлия высокой чистоты. Технический галлий подвергают вакуум-термической обработке в вакуумной камере с размещенными в ней графитовыми тиглями, соосно расположенными один над другим. В центре дна тиглей, расположенных над нижним тиглем, выполнен цилиндрический выступ, на боковой поверхности которого по периметру выполнены отверстия. Технический галлий загружают в нижний тигель, камеру вакуумируют до 1·10-3-1·10-5 мм рт.ст., нагревают до температуры 1400-1500°С в области нижнего тигля и поддерживают данную температуру в течение 2-6 часов. Галлий после вакуум-термической обработки подвергают трехкратной кристаллизационной очистке методом направленной кристаллизации при скорости роста кристалла 1 см/час. Техническим результатом является получение металлического галлия с содержанием галлия не менее 99,99999% по массе. 1 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к внепечному алюминотермическому восстановлению тантала. Готовят шихту, содержащую оксид тантала Ta2O5, алюминий и гипс в качестве термитной добавки при соотношении Ta2O5:CaSO4=(1,6-1,7):1. Процесс восстановления проводят в вакуумной камере в атмосфере аргона при давлении 0,15-0,2 атм, разделяют продукты реакции шлак-металл. Исходные материалы используют с влажностью, характеризующейся потерей при прокаливании (п.п.п.), которая составляет для оксида тантала 0,1-0,2%, а для гипса 0,2-0,3%. Обеспечивается увеличение выхода тантала при восстановлении. 1 табл., 1 пр.
Изобретение относится к получению материала для электронной промышленности, в частности, для литий-ионных аккумуляторов. Способ получения нанопорошков композита на основе титаната лития Li4Ti5O12/C включает смешивание диоксида титана, карбоната лития и крахмала и термическую обработку полученной смеси до получения материала с 100% структурой шпинели. Карбонат лития берут в 10÷15 мас.% избытке от стехиометрически необходимого для получения соединения Li4Ti5O12. Крахмал вводят в смесь в количестве 10÷20 мас.% от массы смеси. Термическую обработку смеси проводят при температуре 850°C в течение 10-15 часов. Изобретение позволяет снизить длительность процесса синтеза нанопорошка композита Li4Ti5O12/C с получением материала с размером зерна 60-70 нм и высокими значениями разрядной емкости 160-170 мАч/г. 1 табл., 1 пр.

Изобретение может быть использовано при получении материалов для электронной промышленности, в частности для литий-ионных аккумуляторов. Способ получения титаната лития включает получение смеси, содержащей соединения титана и лития, и термообработку полученной смеси с последующим обжигом продукта термообработки. Перед получением указанной смеси раствор тетрахлорида титана подвергают солевому гидролизу в кипящем растворе хлорида лития при температуре 120÷150°C. Затем фильтруют образующуюся пульпу и промывают полученный осадок раствором щелочного агента, выбранного из группы: карбонат аммония, гидроокись аммония, карбонат лития, гидроокись лития, с последующей промывкой водой и сушкой. В качестве соединений лития для получения смеси, содержащей соединения титана и лития, берут соединение лития, выбранное из группы: карбонат, гидрооксид, оксалат, ацетат лития или их смеси. Далее проводят термообработку при 400-500°C в режиме пиролиза. Обжиг термообработанной смеси проводят при температуре 800÷900°C в течение не менее 5 часов. Изобретение позволяет упростить получение наноразмерных частиц порошка титаната лития Li4Ti5O12 шпинельной структуры, сократить время получения конечного продукта. 4 з.п. ф-лы, 3 ил., 2 табл., 1 пр.
Изобретение относится к химической технологии редких и тугоплавких металлов, а именно к способам очистки тетрахлорида гафния от сопутствующих примесей, включая цирконий, восстановлением их тетрахлоридов

Изобретение относится к химической технологии редких и тугоплавких металлов, а именно к способам разделения циркония и гафния из смеси их тетрахлоридов ректификацией

Изобретение относится к области получения пентахлоридов ниобия и/или тантала из их оксидов и/или оксихлоридов

 


Наверх