Патенты автора Соколов Владимир Васильевич (RU)

Изобретение относится к сульфидным соединениям с магнитострикционным эффектом, которые могут быть использованы для нужд микроэлектроники, сейсмографии и космической техники, в частности, к созданию многофункциональных магнитострикционных материалов. Магнитострикционный материал альфа моносульфид марганца с гигантской магнитострикцией включает марганец и серу при следующем соотношении компонентов, мас.%: марганец 63,04, сера 36,96 или марганец 63,15, сера 36,85, или марганец 62,9, сера 37,1, при этом имеет кубическую кристаллическую структуру, пространственную группу Fm-3m(225), с объемом элементарной ячейки Техническим результатом изобретения является получение нового альфа моносульфида марганца, обладающего гигантской магнитострикцией. 4 ил., 2 табл.

Изобретение относится к способу получения на основе минерального сырья доломита (CaMg(CO3)2) и диоксида кремния (чистого кварцевого песка) диопсидного стекла, близкого к составу MgCaSi2O6, с различными функциональными свойствами, в частности, для получения люминесцентных и окрашенных диопсидных стекол с добавками редкоземельных оксидов, которые могут быть использованы для изготовления изделий промышленного, ювелирного и декоративно-художественного назначения. Способ включает подготовку шихты термообработкой смеси из минерального сырья доломита и диоксида кремния в мольном соотношении 1:2 в открытом алундовом тигле путем нагрева до 1200°С, плавку подготовленной шихты в стеклоуглеродном тигеле в инертной атмосфере с использованием высокочастотного нагрева с перегревом расплава до 1600-1700°С до осветления расплава и закалку расплава в режиме выключенной печи. Редкоземельные оксиды, такие как празеодим, неодим, самарий, европий, тербий или диспрозий, вводят в состав подготовленной шихты в количестве 1-30 мас.%. Применение доломита упрощает подготовку шихты, поскольку доломит содержит в своем составе соотношение кальция и магния, близкое как в диопсиде и необходимое для получения диопсидного стекла. 2 н. и 2 з.п. ф-лы, 3 табл., 3 ил.

Изобретение относится к использованию минерального сырья хромдиопсида (магний-кальциевый силикат состава MgCaSi2O6, содержащий примесь хрома) для получения ювелирного поделочного материала в виде плавленых цветных однородных окрашенных стеклообразных образцов. Зеленое хромдиопсидовое стекло получают плавлением с использованием высокочастотного нагрева минерального хромдиопсидового сырья в стеклоуглеродном тигле в инертной атмосфере с последующим перегревом расплава до температуры 1600°С, выдержкой расплава при этой температуре до его осветления и закалкой расплава выключением высокочастотного нагрева, обеспечивающим в течение до трех минут охлаждение расплава до 600°С. Синее хромдиопсидовое стекло получают плавлением с использованием высокочастотного нагрева минерального хромдиопсидового сырья в стеклоуглеродном тигле в инертной атмосфере с последующим перегревом расплава до температуры 1700°С, выдержкой расплава при этой температуре до его осветления, снижением температуры расплава до 1600°С и последующей закалкой расплава выключением высокочастотного нагрева, обеспечивающим в течение до трех минут охлаждение расплава до 600°С. Техническим результатом является получение ювелирного поделочного материала в виде прозрачных стеклообразных однородных окрашенных образцов хромдиопсида зеленого и синего цвета с сохранением свойств, присущих хромдиопсиду, для поделочных материалов. 2 н.п. ф-лы, 3 ил.

Изобретение относится к химической промышленности и порошковой металлургии и может быть использовано при изготовлении спеченных твердых сплавов и катализаторов. Карбид ванадия получают нагревом смеси оксида ванадия V2O3 и нановолокнистого углерода с удельной поверхностью 138-160 м2/г в токе инертного газа при температуре 1250-1350°C в течение 25-30 мин. Изобретение позволяет упростить процесс получения карбида ванадия и уменьшить энергозатраты.
Изобретение относится к порошковой металлургии, в частности к синтезу диборида циркония, и может быть использовано для изготовления чехлов высокотемпературных термопар, нагревателей высокотемпературных электропечей сопротивления, испарителей и лодочек для вакуумной металлизации, тиглей для прецизионной металлургии, труб для перекачивания расплавленных металлов. Способ получения диборида циркония включает нагрев шихты из смеси двуокиси циркония, карбида бора и высокодисперсного углеродного материала. Нагрев проводят при температуре 1600-1700°С в течение 25-30 минут, при этом частицы карбида бора имеют размер не более 1 микрона, удельная поверхность высокодисперсного углеродного материала составляет 138-160 м2/г, а в качестве высокодисперсного углеродного материала используют нановолокнистый углерод. Предложенный способ направлен на уменьшение энергозатрат. 1 пр.
Изобретение относится к порошковой металлургии, в частности к синтезу диборида титана, и может быть использовано для производства керамической брони, изготовления нагревателей высокотемпературных электропечей сопротивления, ванн и тиглей - испарителей металлов, деталей металлопроводов и электромагнитных насосов для перекачивания расплавленных металлов, узлов химической аппаратуры. Способ получения диборида титана состоит в нагреве шихты из смеси двуокиси титана, химического реагента, содержащего бор, и углеродного материала при температуре 1500-1700°C в течение 20-25 минут. Смешение компонентов шихты осуществляется при совместном просеивании. В качестве углеродного материала используют высокодисперсный порошок нановолокнистого углерода с удельной поверхностью 138-160 м2/г. Изобретение позволяет упростить процесс получения диборида титана.
Изобретение относится к химической промышленности и может быть использовано при финишной металлообработке, для производства керамической брони, при износостойкой наплавке. Шихту из смеси аморфного бора и высокодисперсного углеродного материала нагревают до 1700-1800°C в течение 15-20 минут. В качестве высокодисперсного углеродного материала используют нановолокнистый углерод. Изобретение позволяет снизить энергозатраты и предотвратить возможность появления примеси свободного углерода. 4 пр.
Изобретение относится к способу получения диборида хрома, состоящему в нагреве шихты из смеси окиси хрома, карбида бора и высокодисперсного углеродного материала. При этом нагрев шихты осуществляют при температуре 1400…1600°C и времени 20…25 минут, частицы карбида бора имеют размер не более 1 микрона, удельная поверхность высокодисперсного углеродного материала составляет 138…160 м2/г, а в качестве высокодисперсного углеродного материала используют нановолокнистый углерод. Способ позволяет уменьшить энергозатраты при получении диборида хрома.

Изобретение может быть использовано в химической промышленности. Способ извлечения редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты (ЭФК) включает пропускание исходной ЭФК через колонну с сорбентом при температуре 20-85°C и последующее пропускание десорбирующего раствора. В качестве сорбента используют сильноосновный анионит гелевого типа. Анионит предварительно переводят в смешанную ионную форму, равновесную с перерабатываемой ЭФК, путем пропускания ЭФК через колонну с анионитом до тех пор, пока состав выходящего из колонны раствора не станет равным составу входящей в нее ЭФК. Десорбцию ведут разбавленной фосфорной кислотой. Сформированный после прохождения через анионит коллоидный раствор, обедненный по кислоте и обогащенный по РЗЭ, направляют на выделение твердого концентрата РЗЭ. Исходную ЭФК пропускают через колонну с сорбентом в направлении снизу вверх, а десорбирующий раствор - в направлении сверху вниз. Изобретение позволяет снизить расход реагентов на десорбцию РЗЭ и регенерацию ионитного материала, повысить технологическую эффективность процесса выделения концентрата РЗЭ из экстракционной фосфорной кислоты. 5 з.п. ф-лы, 1 ил., 4 табл., 5 пр.

Изобретение относится к способу извлечения редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты (ЭФК). Способ включает использование анионита фосфатно-смешанной формы в циклическом процессе сорбции-десорбции. При этом десорбцию во всех, кроме последней, стадях-циклах, ведут до соотношения начальной (С0) и конечной (С) концентраций кислоты, соответствующего условию 0,25≤C/С0≤0,75, а в последней - до концентрации десорбируемой фосфорной кислоты не более 0,15 моль/л. Пропускание ЭФК через колонну с анионитом ведут на каждой стадии цикла снизу вверх до проскока, соответствующего относительной концентрации, соответствующей условию 0,25≤C/С0≤0,75. Полученный обогащенный по РЗЭ раствор направляют на выделение твердого концентрата РЗЭ. Десорбцию на каждой стадии цикла ведут разбавленной фосфорной кислотой с получением во всех, кроме последней, стадиях-циклах десорбата очищенной фосфорной кислоты и десорбата последней стадии-цикла - с относительной концентрацией фосфорной кислоты, соответствующей условию 0,25≤C/С0≤0,75, и с концентрацией менее 0,25 моль/л. При этом последний возвращают на стадию десорбции. Технический результат заключается в повышении выделения концентрата РЗЭ. 6 з.п. ф-лы, 8 ил., 4 табл., 6 пр.
Изобретение может быть использовано при изготовлении режущего инструмента, при износостойкой наплавке, для получения композиционных электрохимических покрытий и контактного материала, обладающего повышенным сопротивлением эрозионному действию электрической дуги. Способ получения карбида хрома включает нагрев шихты из смеси оксида хрома (III) и углерода до температуры 1100-1350°С. Оксид хрома (III) и углерод берут в массовом соотношении 74,5:25,5. Процесс проводят в тигле из стеклоуглерода при атмосферном давлении. Изобретение позволяет упростить процесс и предотвратить частичное окисление углерода шихты. 1 з.п. ф-лы.

Изобретение относится к разработке новых сульфидных соединений, которые могут быть использованы для нужд микроэлектроники, в частности к созданию материалов с анизотропией магнитосопротивления при комнатной температуре

Изобретение относится к новым сульфидным соединениям, которые могут быть использованы для нужд микроэлектроники, в частности к созданию магнитострикционных материалов
Изобретение относится к способу получения металлического марганца в виде порошка, который может быть использован в исследовательских целях, в черной металлургии как добавка к сталям, в производстве сплавов и лигатур

Изобретение относится к разработке неорганических красителей, а именно неорганических пигментов, в частности к составам для окрашивания на основе сульфидов лантана, олова и кальция, которые могут быть использованы в лакокрасочной промышленности, производстве пластмасс, керамики, строительных материалов

Изобретение относится к получению желтых пигментов, которые могут быть использованы в лакокрасочной промышленности и производстве пластмасс

Изобретение относится к неорганическим пигментам, имеющим окраску от оранжевого до лимонно-желтого цвета, на основе сложных молибдатов редкоземельных и щелочных элементов, а именно церия, натрия и кальция, которые могут быть использованы в лакокрасочной промышленности, производстве пластмасс, керамики, строительных материалов
Изобретение относится к технологии получения силана для изготовления особо чистого полупроводникового кремния, используемого в силовой электронике, а также кремниевых пластин для производства сверхбольших интегральных схем и для формирования различных кремнийсодержащих слоев и пленочных покрытий в микроэлектронике

 


Наверх